Skip to main content
Log in

Neural-network-based fully distributed formation control for nonlinear multi-agent systems with event-triggered communication

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the consensus-based formation control problem for multi-agent systems with unknown nonlinear dynamics. To achieve the desired formation, we propose two formation controllers to achieve the desired formation, one based on system states and the other on system outputs. The proposed controllers utilize adaptive gains to avoid global information and neural networks to estimate and compensate for nonlinearities. The proposed event-triggered schemes avoid continuous communication among agents and exclude the Zeno behavior. Stability analysis reveals that formation errors are bounded, and numerical simulations are used to validate the effectiveness of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Koung D, Kermorgant O, Fantoni I, et al. Cooperative multi-robot object transportation system based on hierarchical quadratic programming. IEEE Robot Autom Lett, 2021, 6: 6466–6472

    Article  Google Scholar 

  2. Tan X G, Yuan Y, He W L, et al. Distributed hybrid optimization for multi-agent systems. Sci China Tech Sci, 2022, 65: 1651–1660

    Article  Google Scholar 

  3. Gu H B, Lü J H, Lin Z L. On PID control for synchronization of complex dynamical network with delayed nodes. Sci China Tech Sci, 2019, 62: 1412–1422

    Article  Google Scholar 

  4. Pei Y Q, Gu H B, Liu K X, et al. An overview on the designs of distributed observers in LTI multi-agent systems. Sci China Tech Sci, 2021, 64: 2337–2346

    Article  Google Scholar 

  5. Wang Y W, Wei Y W, Liu X K, et al. Optimal persistent monitoring using second-order agents with physical constraints. IEEE Trans Automat Contr, 2019, 64: 3239–3252

    Article  MathSciNet  Google Scholar 

  6. Oh K K, Park M C, Ahn H S. A survey of multi-agent formation control. Automatica, 2015, 53: 424–440

    Article  MathSciNet  Google Scholar 

  7. Kamel M A, Yu X, Zhang Y. Formation control and coordination of multiple unmanned ground vehicles in normal and faulty situations: A review. Ann Rev Control, 2020, 49: 128–144

    Article  MathSciNet  Google Scholar 

  8. Ren W. Consensus strategies for cooperative control of vehicle formations. IET Control Theor Appl, 2007, 1: 505–512

    Article  Google Scholar 

  9. Xu Y, Luo D L, Duan H B. Distributed planar formation maneuvering of leader-follower networked systems via a barycentric coordinate-based approach. Sci China Tech Sci, 2021, 64: 1705–1718

    Article  Google Scholar 

  10. Liu D, Liu H, Lewis F L, et al. Robust fault-tolerant formation control for tail-sitters in aggressive flight mode transitions. IEEE Trans Ind Inf, 2020, 16: 299–308

    Article  Google Scholar 

  11. Wang R, Dong X, Li Q, et al. Distributed time-varying formation control for multiagent systems with directed topology using an adaptive output-feedback approach. IEEE Trans Ind Inf, 2019, 15: 4676–4685

    Article  Google Scholar 

  12. Bai T T, Wang D B, Masood R J. Formation control of quad-rotor UAV via PIO. Sci China Tech Sci, 2022, 65: 432–439

    Article  Google Scholar 

  13. Das A, Lewis F L. Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica, 2010, 46: 2014–2021

    Article  MathSciNet  Google Scholar 

  14. Yu J, Dong X, Li Q, et al. Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Trans Neural Netw Learn Syst, 2018, 29: 6015–6025

    Article  MathSciNet  Google Scholar 

  15. Chen J X, Chen W S, Li J M, et al. Adaptive neural control of nonlinear periodic time-varying parameterized mixed-order multi-agent systems with unknown control coefficients. Sci China Tech Sci, 2022, 65: 1675–1684

    Article  Google Scholar 

  16. Peng Z, Wang D, Zhang H, et al. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems. IEEE Trans Neural Netw Learn Syst, 2014, 25: 1508–1519

    Article  Google Scholar 

  17. Yue D, Cao J, Li Q, et al. Distributed neuro-adaptive formation control for uncertain multi-agent systems: Node- and edge-based designs. IEEE Trans Netw Sci Eng, 2020, 7: 2656–2666

    Article  MathSciNet  Google Scholar 

  18. Wang X X, Liu Z X, Chen Z Q. Event-triggered fault-tolerant consensus control with control allocation in leader-following multi-agent systems. Sci China Tech Sci, 2021, 64: 879–889

    Article  Google Scholar 

  19. Hu A H, Park J H, Cao J D, et al. Event-triggered bipartite consensus over cooperation-competition networks under DoS attacks. Sci China Tech Sci, 2021, 64: 157–168

    Article  Google Scholar 

  20. Jin X, Tang Y, Shi Y, et al. Event-triggered formation control for a class of uncertain Euler-Lagrange systems: Theory and experiment. IEEE Trans Contr Syst Technol, 2022, 30: 336–343

    Article  Google Scholar 

  21. Zhu G, Liu K, Gu H, et al. Observer-based event-triggered formation control of multi-agent systems with switching directed topologies. IEEE Trans Circuits Syst I, 2022, 69: 1323–1332

    Article  Google Scholar 

  22. Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems. IEEE Trans Automat Contr, 2012, 57: 1291–1297

    Article  MathSciNet  Google Scholar 

  23. Yi X, Liu K, Dimarogonas D V, et al. Dynamic event-triggered and self-triggered control for multi-agent systems. IEEE Trans Automat Contr, 2019, 64: 3300–3307

    Article  MathSciNet  Google Scholar 

  24. Seyboth G S, Dimarogonas D V, Johansson K H. Event-based broadcasting for multi-agent average consensus. Automatica, 2013, 49: 245–252

    Article  MathSciNet  Google Scholar 

  25. Liu K, Duan P, Duan Z, et al. Leader-following consensus of multiagent systems with switching networks and event-triggered control. IEEE Trans Circuits Syst I, 2018, 65: 1696–1706

    Article  Google Scholar 

  26. Wang Y W, Lei Y, Bian T, et al. Distributed control of nonlinear multiagent systems with unknown and nonidentical control directions via event-triggered communication. IEEE Trans Cybern, 2020, 50: 1820–1832

    Article  Google Scholar 

  27. Cheng B, Wu Z, Li Z. Distributed edge-based event-triggered formation control. IEEE Trans Cybern, 2019, 51: 1241–1252

    Article  Google Scholar 

  28. Zhu G, Liu K, Gu H, et al. Fully distributed event-triggered formation control for multi-agent systems with unknown disturbances. Int J Robust Nonlinear, 2023, 33: 736–752

    Article  MathSciNet  Google Scholar 

  29. Li Z, Yan J, Yu W, et al. Adaptive event-triggered control for unknown second-order nonlinear multiagent systems. IEEE Trans Cybern, 2021, 51: 6131–6140

    Article  Google Scholar 

  30. Xu T, Hao Y, Duan Z. Fully distributed containment control for multiple Euler-Lagrange systems over directed graphs: An event-triggered approach. IEEE Trans Circuits Syst I, 2020, 67: 2078–2090

    Article  MathSciNet  Google Scholar 

  31. Chen C L P, Wen G X, Liu Y J, et al. Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans Cybern, 2016, 46: 1591–1601

    Article  Google Scholar 

  32. Zheng D Z. Linear System Theory (in Chinese). 2nd ed. Beijing: Tsinghua University Press, 2002

    Google Scholar 

  33. Ni M L, Er M J. Stability of linear systems with delayed perturbations: An LMI approach. IEEE Trans Circuits Syst I, 2002, 49: 108–112

    Article  MathSciNet  Google Scholar 

  34. Khalil H. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice-Hall, 2002

    Google Scholar 

  35. Dong X, Wang Q, Yu J, et al. Neuroadaptive output formation tracking for heterogeneous nonlinear multiagent systems with multiple nonidentical leaders. IEEE Trans Neural Netw Learn Syst, 2022, 1–11

  36. Dong X, Tan Q, Li Q, et al. Necessary and sufficient conditions for average formation tracking of second-order multi-agent systems with multiple leaders. J Franklin Inst, 2017, 354: 611–626

    Article  MathSciNet  Google Scholar 

  37. Wang D, Wang D, Wang W. Necessary and sufficient conditions for containment control of multi-agent systems with time delay. Automatica, 2019, 103: 418–423

    Article  MathSciNet  Google Scholar 

  38. Shao X, Liu J, Cao H, et al. Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer. Int J Robust Nonlinear, 2018, 28: 2700–2719

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinHu Lü.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2022YFB3305600), the National Natural Science Foundation of China (Grant Nos. 62103015, 62141604 and 92067204), and the Fundamental Research Funds for Central Universities of China (Grant No. YWF-23-03-QB-019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Liu, K., Gu, H. et al. Neural-network-based fully distributed formation control for nonlinear multi-agent systems with event-triggered communication. Sci. China Technol. Sci. 67, 209–220 (2024). https://doi.org/10.1007/s11431-022-2410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2410-1

Keywords

Navigation