Skip to main content
Log in

Experimental study on heat transfer enhancement of square-array jet impingement by using an integrated synthetic jet actuator

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit. To illustrate the potential of this concept, an experimental investigation is performed, wherein two jet Reynolds numbers (Re = 3000 and 5000), three hole-to-hole pitches (X/d = Y/d = 4, 5 and 6), and three impinging distances (H/d =2,6 and 10) are considered while the synthetic jet is actuated at a fixed frequency of 180 Hz with a characteristic Reynolds number (Re0) of about 2430. The results show that the synthetic jet has rare influence on the stagnation heat transfer of square-array jet but effectively improves the local heat transfer at the central zone of array unit. Its potential is tightly dependent on the array layout, Reynolds number and impinging distance. In general, the spatially-averaged Nusselt number augment behaves more significantly for the situations with smaller jet Reynolds number and bigger impinging distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlomagno G M, Ianiro A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review. Exp Thermal Fluid Sci, 2014, 58: 15–35

    Article  Google Scholar 

  2. Du M M, Zhong F Q, Xing Y F, et al. Study of coupled effect of impingement jet cooling of kerosene with solid structure. Sci China Tech Sci, 2019, 62: 2021–2028

    Article  Google Scholar 

  3. Zhang Z W, Hu D H, Li Q, et al. Visualization study on atomization characteristics and heat transfer performance of R1336mzz flash spray cooling. Sci China Tech Sci, 2021, 64: 2099–2109

    Article  Google Scholar 

  4. Koseoglu M F, Baskaya S. The role of jet inlet geometry in impinging jet heat transfer, modeling and experiments. Int J Thermal Sci, 2010, 49: 1417–1426

    Article  Google Scholar 

  5. Lyu Y W, Zhang J Z, Wang B Y, et al. Convective heat transfer on flat and concave surfaces subjected to an impinging jet form lobed nozzle. Sci China Tech Sci, 2020, 63: 116–127

    Article  Google Scholar 

  6. Ndao S, Lee H J, Peles Y, et al. Heat transfer enhancement from micro pin fins subjected to an impinging jet. Int J Heat Mass Transfer, 2012, 55: 413–421

    Article  Google Scholar 

  7. Rao Y, Chen P, Wan C. Experimental and numerical investigation of impingement heat transfer on the surface with micro W-shaped ribs. Int J Heat Mass Transfer, 2016, 93: 683–694

    Article  Google Scholar 

  8. Yang H Q, Kim T B, Lu T J. Characteristics of annular impinging jets with/without swirling flow by short guide vanes. Sci China Tech Sci, 2011, 54: 749–757

    Article  Google Scholar 

  9. Violato D, Ianiro A, Cardone G, et al. Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Int J Heat Fluid Flow, 2012, 37: 22–36

    Article  Google Scholar 

  10. Cafiero G, Discetti S, Astarita T. Heat transfer enhancement of impinging jets with fractal-generated turbulence. Int J Heat Mass Transfer, 2014, 75: 173–183

    Article  Google Scholar 

  11. Persoons T, Balgazin K, Brown K, et al. Scaling of convective heat transfer enhancement due to flow pulsation in an axisymmetric impinging jet. J Heat Transfer, 2013, 135: 111012

    Article  Google Scholar 

  12. Tan X M, Zhang J Z, Liu B, et al. Experimental investigation on heat transfer enhancement of mist/air impingement jet. Sci China Tech Sci, 2013, 56: 2456–2464

    Article  Google Scholar 

  13. Arshad A, Jabbal M, Yan Y. Synthetic jet actuators for heat transfer enhancement—A critical review. Int J Heat Mass Transfer, 2020, 146: 118815

    Article  Google Scholar 

  14. Weigand B, Spring S. Multiple jet impingement—A review. Heat Trans Res, 2011, 42: 101–142

    Article  Google Scholar 

  15. Zhang J J, Chen Y W, Liu Y, et al. Experimental investigation on heat transfer characteristics of microcapsule phase change material suspension in array jet impingement. Sci China Tech Sci, 2022, 65: 1634–1645

    Article  Google Scholar 

  16. Yan W M, Mei S C. Measurement of detailed heat transfer along ribroughened surface under arrays of impinging elliptic jets. Int J Heat Mass Transfer, 2006, 49: 159–170

    Article  Google Scholar 

  17. Nuntadusit C, Wae-hayee M, Bunyajitradulya A, et al. Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators. Int Commun Heat Mass Transfer, 2012, 39: 102–107

    Article  Google Scholar 

  18. Rao Y. Jet Impingement heat transfer in narrow channels with different pin fin configurations on target surfaces. J Heat Transfer, 2018, 140: 072201

    Article  Google Scholar 

  19. Chang S W, Shen H D. Heat transfer of impinging jet array with web-patterned grooves on nozzle plate. Int J Heat Mass Transfer, 2019, 141: 129–144

    Article  Google Scholar 

  20. Vinze R, Khade A, Kuntikana P, et al. Effect ofdimple pitch and depth on jet impingement heat transfer over dimpled surface impinged by multiple jets. Int J Thermal Sci, 2019, 145: 105974

    Article  Google Scholar 

  21. Yildizeli A, Cadirci S. Multi-objective optimization of multiple impinging jet system through genetic algorithm. Int J Heat Mass Transfer, 2020, 158: 119978

    Article  Google Scholar 

  22. Mahalingam R, Rumigny N, Glezer A. Thermal management using synthetic jet ejectors. IEEE Trans Comp Packag Technol, 2004, 27: 439–444

    Article  Google Scholar 

  23. Pavlova A, Amitay M. Electronic cooling using synthetic jet impingement. J Heat Transfer, 2006, 128: 897–907

    Article  Google Scholar 

  24. Zhang P F, Wang J J. Novel signal wave pattern for efficient synthetic jet generation. AIAA J, 2007, 45: 1058–1065

    Article  Google Scholar 

  25. McGuinn A, Farrelly R, Persoons T, et al. Flow regime characterisation of an impinging axisymmetric synthetic jet. Exp Thermal Fluid Sci, 2013, 47: 241–251

    Article  Google Scholar 

  26. Xu Y, Wang J J. Recent development of vortex ring impinging onto the wall. Sci China Tech Sci, 2013, 56: 2447–2455

    Article  Google Scholar 

  27. Crispo C M, Greco C S, Cardone G. Flow field features of chevron impinging synthetic jets at short nozzle-to-plate distance. Exp Thermal Fluid Sci, 2019, 106: 202–214

    Article  Google Scholar 

  28. Valiorgue P, Persoons T, McGuinn A, et al. Heat transfer mechanisms in an impinging synthetic jet for a small jet-to-surface spacing. Exp Thermal Fluid Sci, 2009, 33: 597–603

    Article  Google Scholar 

  29. Tan X, Zhang J, Yong S, et al. An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer. Int J Heat Mass Transfer, 2015, 90: 227–238

    Article  Google Scholar 

  30. Silva-Llanca L, Ortega A. Vortex dynamics and mechanisms of heat transfer enhancement in synthetic jet impingement. Int J Thermal Sci, 2017, 112: 153–164

    Article  Google Scholar 

  31. Xu Y, Moon C, Wang J J, et al. An experimental study on the flow and heat transfer of an impinging synthetic jet. Int J Heat Mass Transfer, 2019, 144: 118626

    Article  Google Scholar 

  32. Wang L, Feng L, Xu Y, et al. Experimental investigation on flow characteristics and unsteady heat transfer of noncircular impinging synthetic jets. Int J Heat Mass Transfer, 2022, 190: 122760

    Article  Google Scholar 

  33. Persoons T, McGuinn A, Murray D B. A general correlation for the stagnation point Nusselt number of an axisymmetric impinging synthetic jet. Int J Heat Mass Transfer, 2011, 54: 3900–3908

    Article  MATH  Google Scholar 

  34. Greco C S, Paolillo G, Ianiro A, et al. Effects of the stroke length and nozzle-to-plate distance on synthetic jet impingement heat transfer. Int J Heat Mass Transfer, 2018, 117: 1019–1031

    Article  Google Scholar 

  35. Mangate L, Yadav H, Agrawal A, et al. Experimental investigation on thermal and flow characteristics of synthetic jet with multiple-orifice of different shapes. Int J Thermal Sci, 2019, 140: 344–357

    Article  Google Scholar 

  36. Krishan G, Aw K C, Sharma R N. Synthetic jet impingement heat transfer enhancement—A review. Appl Thermal Eng, 2019, 149: 1305–1323

    Article  Google Scholar 

  37. Qayoum A, Panigrahi P K. Combined influence of synthetic jet and surface-mounted rib on heat transfer in a square channel. J Heat Transfer, 2015, 137: 121004

    Article  Google Scholar 

  38. Yeom T, Huang L, Zhang M, et al. Heat transfer enhancement of air-cooled heat sink channel using a piezoelectric synthetic jet array. Int J Heat Mass Transfer, 2019, 143: 118484

    Article  Google Scholar 

  39. Jeng T M, Tzeng S C, Tseng C W, et al. Effect of transverse synthetic jet on heat transfer characteristics of the heat sink situated in a rectangular channel with axial main flow. Heat Mass Transfer, 2021, 57: 1145–1159

    Article  Google Scholar 

  40. Iwana T, Suenaga K, Shirai K, et al. Heat transfer and fluid flow characteristics of impinging jet using combined device with triangular tabs and synthetic jets. Exp Thermal Fluid Sci, 2015, 68: 322–329

    Article  Google Scholar 

  41. Tang H, Zhong S. Modelling of the characteristics of synthetic jet actuators. In: Proceedings of the 35th AIAA Fluid Dynamics Conference and Exhibit 35th AIAA Fluid Dyn. Conf. and Exhibit. Toronto, 2005.

  42. Smith B L, Glezer A. The formation and evolution of synthetic jets. Phys Fluids, 1998, 10: 2281–2297

    Article  MathSciNet  MATH  Google Scholar 

  43. Glezer A, Amitay M. Synthetic jets. Annu Rev Fluid Mech, 2002, 34: 503–529

    Article  MathSciNet  MATH  Google Scholar 

  44. Li X J, Zhang J Z, Tan X M. Experimental and numerical investigations on convective heat transfer of dual piezoelectric fans. Sci China Tech Sci, 2018, 61: 232–241

    Article  Google Scholar 

  45. Moffat R J. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci, 1988, 1: 3–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanWei Lyu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 52206091), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210303), Interdisciplinary Innovation Fund for Doctoral Students of Nanjing University of Aeronautics and Astronautics (Grant No. KXKCXJJ202309), and Advanced Jet Propulsion Innovation (Grant No. HKCX2022-01-001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Lyu, Y., Zhang, J. et al. Experimental study on heat transfer enhancement of square-array jet impingement by using an integrated synthetic jet actuator. Sci. China Technol. Sci. 66, 3439–3449 (2023). https://doi.org/10.1007/s11431-022-2384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2384-6

Navigation