Skip to main content
Log in

Robust decoupling control of a parallel kinematic machine using the time-delay estimation technique

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a robust decoupling control scheme using a time-delay estimation technique for a parallel kinematic machine to enhance its trajectory tracking performance. The dynamic model of a parallel kinematic machine (PKM) is a multivariable nonlinear strongly coupled system that is always affected by uncertainties and external disturbances. The proposed controller employs the time-delay estimation (TDE) technique to estimate the dynamic model of a PKM with uncertainties and disturbances, thus obtaining a simple model structure. The TDE technique involves estimating the unknown system dynamics by intentionally using a time-delayed signal, which will inevitably lead to estimation errors. Hence, the proposed controller effectively reduces the unfavourable TDE error by combining fast and robust integral terminal sliding mode control with TDE (TDE-ITSMC). In turn, the TDE technique can reduce the upper bound on the switching gain in the sliding mode control (SMC) scheme, which reduces damage to the robot. Finally, comparative experimental studies with other controllers confirm that TDE-ITSMC offers excellent trajectory tracking accuracy and is a practical robust control scheme for PKMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Belzile B, Angeles J, et al. Kinematic analysis and optimum design of a novel 2PUR-2RPU parallel robot. Mechanism Machine Theor, 2019, 139: 407–423

    Article  Google Scholar 

  2. Xu L, Chen Q, He L, et al. Kinematic analysis and design of a novel 3T1R 2-(PRR)2RH hybrid manipulator. Mechanism Machine Theor, 2017, 112: 105–122

    Article  Google Scholar 

  3. Li Q, Marie Hervé J, Huang P. Type synthesis of a special family of remote center-of-motion parallel manipulators with fixed linear actuators for minimally invasive surgery. J Mech Robotics, 2017, 9: 031012

    Article  Google Scholar 

  4. Li Q, Herve J M. Type synthesis of 3-DOF RPR-equivalent parallel mechanisms. IEEE Trans Robot, 2014, 30: 1333–1343

    Article  Google Scholar 

  5. Zhao Y, Jin Y, Zhang J. Kinetostatic modeling and analysis of an exechon parallel kinematic machine(PKM) module. Chin J Mech Eng, 2016, 29: 33–44

    Article  Google Scholar 

  6. Siciliano B. The Tricept robot: Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm. Robotica, 1999, 17: 437–445

    Article  Google Scholar 

  7. Ahl J. Articulated tool head: US, 6431802. 2002-8-13

  8. Dong C, Liu H, Xiao J, et al. Dynamic modeling and design of a 5-DOF hybrid robot for machining. Mechanism Machine Theor, 2021, 165: 104438

    Article  Google Scholar 

  9. Xie Z, Xie F, Liu X J, et al. Tracking error prediction informed motion control of a parallel machine tool for high-performance machining. Int J Machine Tools Manufacture, 2021, 164: 103714

    Article  Google Scholar 

  10. Li Q, Wu W, Xiang J, et al. A hybrid robot for friction stir welding. Proc Institution Mech Engineers Part C-J Mech Eng Sci, 2015, 229: 2639–2650

    Article  Google Scholar 

  11. Pfreundschuh G H, Kumar V, Sugar T G. Design and control of a 3-DOF in-parallel actuated manipulator. In: Proceedings of 1991 IEEE International Conference on Robotics and Automation. Sacramento, CA, USA: IEEE, 1991

    Book  Google Scholar 

  12. Mann G K, Surgenor B W. Model-free intelligent control of a 6-DOF Stewart-Gough based parallel manipulator, In: Proceedings of the International Conference on Control Applications. Glasgow, UK: IEEE, 2002

    Book  Google Scholar 

  13. Toloue S F, Akbarzadeh M R, Akbarzadeh A, et al. Position tracking of a 3-PSP parallel robot using dynamic growing interval type-2 fuzzy neural control. Appl Soft Computing, 2015, 37: 1–14

    Article  Google Scholar 

  14. Lee S H, Song J B, Choi W C, et al. Position control of a Stewart platform using inverse dynamics control with approximate dynamics. Mechatronics, 2003, 13: 605–619

    Article  Google Scholar 

  15. Yang Z, Wu J, Mei J. Motor-mechanism dynamic model based neural network optimized computed torque control of a high speed parallel manipulator. Mechatronics, 2007, 17: 381–390

    Article  Google Scholar 

  16. Yang X, Zhu L, Ni Y, et al. Modified robust dynamic control for a diamond parallel robot. IEEE ASME Trans Mechatron, 2019, 24: 959–968

    Article  Google Scholar 

  17. Yang X, Liu H, Xiao J, et al. Continuous friction feedforward sliding mode controller for a TriMule hybrid robot. IEEE ASME Trans Mechatron, 2018, 23: 1673–1683

    Article  Google Scholar 

  18. Shang W, Cong S. Robust nonlinear control of a planar 2-DOF parallel manipulator with redundant actuation. Robotics Comput-Integrated Manuf, 2014, 30: 597–604

    Article  Google Scholar 

  19. Shang W W, Cong S, Ge Y. Coordination motion control in the task space for parallel manipulators with actuation redundancy. IEEE Trans Automat Sci Eng, 2012, 10: 665–673

    Article  Google Scholar 

  20. Zhang B, Shang W, Cong S, et al. Coordinated dynamic control in the task space for redundantly actuated cable-driven parallel robots. IEEE ASME Trans Mechatron, 2020, 26: 2396–2407

    Article  Google Scholar 

  21. Liang D, Song Y, Sun T, et al. Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes. J Sound Vib, 2017, 403: 129–151

    Article  Google Scholar 

  22. Liang D, Song Y, Sun T, et al. Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes. Mech Syst Signal Processing, 2018, 103: 413–439

    Article  Google Scholar 

  23. Sun T, Liang D, Song Y. Singular-perturbation-based nonlinear hybrid control of redundant parallel robot. IEEE Trans Ind Electron, 2018, 65: 3326–3336

    Article  Google Scholar 

  24. Youcef-toumi K, Ito O. A time delay controller for systems with unknown dynamics. J Dyn Syst Meas Control, 1990, 112: 133–142

    Article  MATH  Google Scholar 

  25. Zhang X, Liu J, Tong Y, et al. Attitude decoupling control of semifloating space robots using time-delay estimation and supertwisting control. IEEE Trans Aerosp Electron Syst, 2021, 57: 4280–4295

    Article  Google Scholar 

  26. Jin M, Lee J, Tsagarakis N G. Model-free robust adaptive control of humanoid robots with flexible joints. IEEE Trans Ind Electron, 2016, 64: 1706–1715

    Article  Google Scholar 

  27. Wang Y X, Yu D H, Kim Y B. Robust time-delay control for the DC–DC boost converter. IEEE Trans Ind Electron, 2013, 61: 4829–4837

    Article  Google Scholar 

  28. Jin M, Kang S H, Chang P H, et al. Robust control of robot manipulators using inclusive and enhanced time delay control. IEEE ASME Trans Mechatron, 2017, 22: 2141–2152

    Article  Google Scholar 

  29. Fei J, Chen Y. Dynamic terminal sliding-mode control for single-phase active power filter using new feedback recurrent neural network. IEEE Trans Power Electron, 2020, 35: 9904–9922

    Article  Google Scholar 

  30. Hu Y, Wang H. Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer. Mech Syst Signal Processing, 2020, 135: 106375

    Article  Google Scholar 

  31. Chen L, Wang H, Huang Y, et al. Robust hierarchical sliding mode control of a two-wheeled self-balancing vehicle using perturbation estimation. Mech Syst Signal Processing, 2020, 139: 106584

    Article  Google Scholar 

  32. Shao K, Zheng J, Wang H, et al. Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner. Mech Syst Signal Processing, 2021, 146: 107014

    Article  Google Scholar 

  33. Wang H, Li Z, Jin X, et al. Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation. IEEE Trans Veh Technol, 2018, 67: 8129–8143

    Article  Google Scholar 

  34. Chen L, Liu J, Wang H, et al. Robust control of reaction wheel bicycle robot via adaptive integral terminal sliding mode. NOnlinear Dyn, 2021, 104: 2291–2302

    Article  Google Scholar 

  35. Wu G, Zhang X, Zhu L, et al. Fuzzy sliding mode variable structure control of a high-speed parallel PnP robot. Mechanism Machine Theor, 2021, 162: 104349

    Article  Google Scholar 

  36. Beiranvand A, Kalhor A, Tale Masouleh M. Modeling, identification and minimum length integral sliding mode control of a 3-DOF cartesian parallel robot by considering virtual flexible links. Mechanism Machine Theor, 2021, 157: 104183

    Article  Google Scholar 

  37. Chang P H, Park S H. On improving time-delay control under certain hard nonlinearities. Mechatronics, 2003, 13: 393–412

    Article  Google Scholar 

  38. Jin M, Kang S H, Chang P H. Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans Ind Electron, 2008, 55: 258–269

    Article  Google Scholar 

  39. Jin M L, Lee J, Chang P H, et al. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans Ind Electron, 2009, 56: 3593–3601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QinChuan Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51935010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ye, W. & Li, Q. Robust decoupling control of a parallel kinematic machine using the time-delay estimation technique. Sci. China Technol. Sci. 66, 1916–1927 (2023). https://doi.org/10.1007/s11431-022-2371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2371-3

Navigation