Skip to main content
Log in

The regulation mechanism and heat transfer enhancement of composite mixed paraffin and copper foam phase change materials

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) have remarkable energy storage capacity and promising applications in the field of thermal control of electronic products. The problem of thermal property improvement and heat transfer of PCMs in metal-foam heatsinks is an important task for thermal management of electronic components. Mixed paraffin samples were prepared by mixing appropriate proportions of paraffin (mass) at various temperatures. Differential scanning calorimetry analysis revealed that the maximum enthalpy of 206.3 J/g is obtained by mixing 20% of 17°C liquid paraffin and 80% of 29°C solid paraffin. Heating and cooling cycling tests revealed that mixed paraffin exhibits excellent thermal stability and that the regulation method marginally affects thermal stability. Moreover, composites were prepared by embedding PCM into a copper foam by melt impregnation. The thermal conductivity of the composites increased to 4.35 W/(mK), corresponding to 20 times its original value. In addition, density functional theory and experimental results were in good agreement, indicating that the regulation method is practical and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graham M, Shchukina E, De Castro P F, et al. Nanocapsules containing salt hydrate phase change materials for thermal energy storage. J Mater Chem A, 2016, 4: 16906–16912

    Article  Google Scholar 

  2. Graham M, Coca-Clemente J A, Shchukina E, et al. Nanoencapsulated crystallohydrate mixtures for advanced thermal energy storage. J Mater Chem A, 2017, 5: 13683–13691

    Article  Google Scholar 

  3. Umair M M, Zhang Y, Iqbal K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review. Appl Energy, 2019, 235: 846–873

    Article  Google Scholar 

  4. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci, 2014, 65: 67–123

    Article  Google Scholar 

  5. de Gracia A, Cabeza L F. Phase change materials and thermal energy storage for buildings. Energy Buildings, 2015, 103: 414–419

    Article  Google Scholar 

  6. Lu X, Sun Y, Chen Z, et al. A multi-functional textile that combines self-cleaning, water-proofing and VO2-based temperature-responsive thermoregulating. Sol Energy Mater Sol Cells, 2017, 159: 102–111

    Article  Google Scholar 

  7. Huo Y, Rao Z. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method. Energy Convers Manage, 2017, 133: 204–215

    Article  Google Scholar 

  8. Zhang Y, Zheng S, Zhu S, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers Manage, 2018, 171: 361–370

    Article  Google Scholar 

  9. Cheng P, Chen X, Gao H, et al. Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy, 2021, 85: 105948

    Article  Google Scholar 

  10. Xue F, Qi X, Huang T, et al. Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions. Chem Eng J, 2021, 419: 129620

    Article  Google Scholar 

  11. Singh P, Sharma R K, Ansu A K, et al. A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Sol Energy Mater Sol Cells, 2021, 223: 110955

    Article  Google Scholar 

  12. Lin X, Zhang X, Ji J, et al. Experimental investigation of form-stable phase change material with enhanced thermal conductivity and thermal-induced flexibility for thermal management. Appl Thermal Eng, 2022, 201: 117762

    Article  Google Scholar 

  13. Tang J, Xie Y, Chang S, et al. Performance analysis of acceleration effect on paraffin melting in finned copper foam. Appl Thermal Eng, 2022, 202: 117826

    Article  Google Scholar 

  14. Chamkha A, Veismoradi A, Ghalambaz M, et al. Phase change heat transfer in an L-shape heatsink occupied with paraffin-copper metal foam. Appl Thermal Eng, 2020, 177: 115493

    Article  Google Scholar 

  15. Zhang H, Li X, Liu L, et al. Experimental investigation on paraffin melting in high porosity copper foam under centrifugal accelerations. Appl Thermal Eng, 2020, 178: 115504

    Article  Google Scholar 

  16. Fazilati M A, Alemrajabi A A. Phase change material for enhancing solar water heater, an experimental approach. Energy Convers Manage, 2013, 71: 138–145

    Article  Google Scholar 

  17. Feliński P, Sekret R. Experimental study of evacuated tube collector/storage system containing paraffin as a PCM. Energy, 2016, 114: 1063–1072

    Article  Google Scholar 

  18. Pardiñas Á Á, Alonso M J, Diz R, et al. State-of-the-art for the use of phase-change materials in tanks coupled with heat pumps. Energy Buildings, 2017, 140: 28–41

    Article  Google Scholar 

  19. Zou D, Ma X, Liu X, et al. Experimental research of an air-source heat pump water heater using water-PCM for heat storage. Appl Energy, 2017, 206: 784–792

    Article  Google Scholar 

  20. Jia J, Lee W L. Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner. Energy, 2015, 93: 1394–1403

    Article  Google Scholar 

  21. Ling Z, Zhang Z, Shi G, et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sustain Energy Rev, 2014, 31: 427–438

    Article  Google Scholar 

  22. Ahmed T, Bhouri M, Kahwaji S, et al. Experimental investigation of thermal management of tablet computers using phase change materials (PCMs). In: Proceedings of the Heat Transfer Summer Conference: American Society of Mechanical Engineers. Washington DC, 2016. V002T011A001

  23. Zhang Y, Wang K, Sun Y, et al. Novel biphasically and reversibly transparent phase change material to solve the thermal issues in transparent electronics. ACS Appl Mater Interfaces, 2022, 14: 31245–31256

    Article  Google Scholar 

  24. Atkin P, Farid M M. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Sol Energy, 2015, 114: 217–228

    Article  Google Scholar 

  25. Sharma S, Micheli L, Chang W, et al. Nano-enhanced phase change material for thermal management of BICPV. Appl Energy, 2017, 208: 719–733

    Article  Google Scholar 

  26. Jankowski N R, McCluskey F P. A review of phase change materials for vehicle component thermal buffering. Appl Energy, 2014, 113: 1525–1561

    Article  Google Scholar 

  27. Hussain A, Tso C Y, Chao C Y H. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite. Energy, 2016, 115: 209–218

    Article  Google Scholar 

  28. Ling Z, Chen J, Fang X, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Appl Energy, 2014, 121: 104–113

    Article  Google Scholar 

  29. Sobolciak P, Abdelrazeq H, Özerkan N G, et al. Heat transfer performance of paraffin wax based phase change materials applicable in building industry. Appl Thermal Eng, 2016, 107: 1313–1323

    Article  Google Scholar 

  30. Liu X L, Song F Z, Xu Q, et al. The influence of pore size distribution on thermal conductivity, permeability, and phase change behavior of hierarchical porous materials. Sci China Tech Sci, 2021, 64: 2485–2494

    Article  Google Scholar 

  31. Shi C Y, Yu M J, Liu W, et al. Shape optimization ofcorrugated tube using B-spline curve for convective heat transfer enhancement based on machine learning. Sci China Tech Sci, 2022, 65: 2734–2750

    Article  Google Scholar 

  32. Qu Y, Wang S, Zhou D, et al. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives. Renew Energy, 2020, 146: 2637–2645

    Article  Google Scholar 

  33. Zhang J J, Chen Y W, Liu Y, et al. Experimental investigation on heat transfer characteristics of microcapsule phase change material suspension in array jet impingement. Sci China Tech Sci, 2022, 65: 1634–1645

    Article  Google Scholar 

  34. Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy, 2013, 112: 1357–1366

    Article  Google Scholar 

  35. Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Thermal Sci, 2014, 81: 94–105

    Article  Google Scholar 

  36. Chen Z, Gao D, Shi J. Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int J Heat Mass Transfer, 2014, 72: 646–655

    Article  Google Scholar 

  37. Wang Z, Zhang Z, Jia L, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Appl Thermal Eng, 2015, 78: 428–436

    Article  Google Scholar 

  38. Şahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells, 2015, 137: 61–67

    Article  Google Scholar 

  39. Babapoor A, Karimi G. Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization. Appl Thermal Eng, 2015, 90: 945–951

    Article  Google Scholar 

  40. Reyes A, Henríquez-Vargas L, Rivera J, et al. Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material. Renew Energy, 2017, 101: 225–235

    Article  Google Scholar 

  41. Kenisarin M M. Thermophysical properties of some organic phase change materials for latent heat storage—A review. Sol Energy, 2014, 107: 553–575

    Article  Google Scholar 

  42. Lu B, Zhang Y, Sun D, et al. Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage. Renew Energy, 2021, 178: 669–678

    Article  Google Scholar 

  43. Ren Y, Xu C, Yuan M, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid- to high-temperature thermal energy storage. Energy Convers Manage, 2018, 163: 50–58

    Article  Google Scholar 

  44. Yan Q, He W, Wang X. Thermal energy storage properties of the capric acid-stearic acid binary system and 48# paraffin-liquid paraffin binary system. Int J Sustain Energy, 2017, 36: 313–325

    Article  Google Scholar 

  45. Xin S, Gao W, Cao D, et al. The thermal transformation mechanism of chlorinated paraffins: An experimental and density functional theory study. J Environ Sci, 2019, 75: 378–387

    Article  Google Scholar 

  46. Mohamed M H, Yang Y, Li L, et al. Designing open metal sites in metal-organic frameworks for paraffin/olefin separations. J Am Chem Soc, 2019, 141: 13003–13007

    Article  Google Scholar 

  47. Zhou Q, Zhang Y, Guo H B, et al. Research on the thermo physical properties of lauric acid-capric acid binary mixture phase change materials. Appl Mech Mater, 2012, 226–228: 1704–1708

    Article  Google Scholar 

  48. Alenova S M, Garkushin I K, Kolyado A V. Calculation and experimental studies of systems ofdibasic carboxylic acids and properties of eutectics. Russ J Phys Chem, 2020, 94: 551–557

    Article  Google Scholar 

  49. Qu Y, Chen J, Liu L, et al. Study on properties of phase change foam concrete block mixed with paraffin/fumed silica composite phase change material. Renew Energy, 2020, 150: 1127–1135

    Article  Google Scholar 

  50. Zheng Z J, Yang C, Xu Y, et al. Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity. Renew Energy, 2021, 172: 802–815

    Article  Google Scholar 

  51. Kahwaji S, Johnson M B, Kheirabadi A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications. Energy, 2018, 162: 1169–1182

    Article  Google Scholar 

  52. Kahraman Döğüşü D, Kızıl Ç, Biçer A, et al. Microencapsulated n-alkane eutectics in polystyrene for solar thermal applications. Sol Energy, 2018, 160: 32–42

    Article  Google Scholar 

  53. Vélez C, Khayet M, Ortiz de Zarate J M. Temperature-dependent pthermal properties of solid/liquid phase change even-numbered n-al-kanes: n-Hexadecane, n-octadecane and n-eicosane. Appl Energy, 2015, 143: 383–394

    Article  Google Scholar 

  54. Mallick D, Poddar M K, Mahanta P, et al. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource Tech, 2018, 261: 294–305

    Article  Google Scholar 

  55. Akyürek Z. Sustainable valorization of animal manure and recycled polyester: Co-pyrolysis synergy. Sustainability, 2019, 11: 2280

    Article  Google Scholar 

  56. Florentino-Madiedo L, Vega M F, Díaz-Faes E, et al. Evaluation of synergy during co-pyrolysis of torrefied sawdust, coal and paraffin. A kinetic and thermodynamic study. Fuel, 2021, 292: 120305

    Article  Google Scholar 

  57. Luo T, Lloyd J R. Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: A molecular dynamics study. Adv Funct Mater, 2012, 22: 2495–2502

    Article  Google Scholar 

  58. Konatham D, Papavassiliou D V, Striolo A. Thermal boundary resistance at the graphene-graphene interface estimated by molecular dynamics simulations. Chem Phys Lett, 2012, 527: 47–50

    Article  Google Scholar 

  59. Zhang P, Zeng J, Zhai S, et al. Thermal properties of graphene filled polymer composite thermal interface materials. Macromol Mater Eng, 2017, 302: 1700068

    Article  Google Scholar 

  60. Li Y, Yue G, Tie W C, et al. Effect of different epoxide and hydroxyl ratios on the heat transport and melting points of graphene/paraffin. Int J Heat Mass Transfer, 2021, 177: 121533

    Article  Google Scholar 

  61. Liu C, Chen C, Yu W, et al. Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3. Int J Thermal Sci, 2020, 152: 106293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuanHua Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51976126), the Natural Science Foundation of Shanghai (Grant Nos. 22ZR1442700, 22WZ2503100, and 20ZR1438600), and Shanghai Municipal Science and Technology Committee of Shanghai Outstanding Academic Leaders Plan (Grant No. 21XD1402400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, G., Dou, B. et al. The regulation mechanism and heat transfer enhancement of composite mixed paraffin and copper foam phase change materials. Sci. China Technol. Sci. 66, 2346–2360 (2023). https://doi.org/10.1007/s11431-022-2366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2366-1

Keywords

Navigation