Skip to main content
Log in

Realization of one-dimensional 2n-root topological states in photonic lattices

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Square-root topological insulators recently discovered are intriguing topological phases. They possess topological properties inherited from the squared Hamiltonian and exhibit double-band structures. The mechanism of the square root was generalized to 2n-root topological insulators, giving rise to more band gaps. In this study, we describe the experimental realization of one-dimensional 2n-root topological insulators in photonic waveguide arrays using the archetypical Su-Schrieffer-Heeger (SSH) model. Topological edge states with tunable numbers are clearly observed under visible light. In particular, we visualized the dynamic evolutions of the light propagation by varying the sample lengths, which further proved the localization and multiple numbers of edge states in 2n-root topological systems. The experiment, which involves constructing 2n-root topological photonic lattices in various geometric arrangements, provides a stable platform for studying topological states that exhibit a remarkable degree of flexibility and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasan M Z, Kane C L. Colloquium: Topological insulators. Rev Mod Phys, 2010, 82: 3045–3067

    Article  Google Scholar 

  2. Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mod Phys, 2011, 83: 1057–1110

    Article  Google Scholar 

  3. Graf G M, Porta M. Bulk-edge correspondence for two-dimensional topological insulators. Commun Math Phys, 2013, 324: 851–895

    Article  MathSciNet  Google Scholar 

  4. Ozawa T, Price H M, Amo A, et al. Topological photonics. Rev Mod Phys, 2019, 91: 015006

    Article  MathSciNet  Google Scholar 

  5. Wang Z, Chong Y, Joannopoulos J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461: 772–775

    Article  Google Scholar 

  6. Rechtsman M C, Zeuner J M, Plotnik Y, et al. Photonic Floquet topological insulators. Nature, 2013, 496: 196–200

    Article  Google Scholar 

  7. Jotzu G, Messer M, Desbuquois R, et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 2014, 515: 237–240

    Article  Google Scholar 

  8. Wintersperger K, Braun C, Ünal F N, et al. Realization of an anomalous Floquet topological system with ultracold atoms. Nat Phys, 2020, 16: 1058–1063

    Article  Google Scholar 

  9. Zhang L, Yang Y, Ge Y, et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat Commun, 2021, 12: 6297

    Article  Google Scholar 

  10. Gao H, Xue H, Wang Q, et al. Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal. Phys Rev B, 2020, 101: 180303

    Article  Google Scholar 

  11. Ni X, Weiner M, Alù A, et al. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat Mater, 2019, 18: 113–120

    Article  Google Scholar 

  12. El Hassan A, Kunst F K, Moritz A, et al. Corner states of light in photonic waveguides. Nat Photon, 2019, 13: 697–700

    Article  Google Scholar 

  13. Noh J, Benalcazar W A, Huang S, et al. Topological protection of photonic mid-gap defect modes. Nat Photon, 2018, 12: 408–415

    Article  Google Scholar 

  14. Blanco-Redondo A, Andonegui I, Collins M J, et al. Topological optical waveguiding in silicon and the transition between topological and trivial defect states. Phys Rev Lett, 2016, 116: 163901

    Article  Google Scholar 

  15. Zhang Z, Teimourpour M H, Arkinstall J, et al. Experimental realization of multiple topological edge states in a 1D photonic lattice. Laser Photon Rev, 2019, 13: 1800202

    Article  Google Scholar 

  16. Cheng Q, Pan Y, Wang Q, et al. Topologically protected interface mode in plasmonic waveguide arrays. Laser Photon Rev, 2015, 9: 392–398

    Article  Google Scholar 

  17. Song W, Sun W, Chen C, et al. Robust and broadband optical coupling by topological waveguide arrays. Laser Photonics Rev, 2020, 14: 1900193

    Article  Google Scholar 

  18. Xie B Y, Su G X, Wang H F, et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys Rev Lett, 2019, 122: 233903

    Article  Google Scholar 

  19. Kim M, Jacob Z, Rho J. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci Appl, 2020, 9: 130

    Article  Google Scholar 

  20. Lu L, Joannopoulos J D, Soljačič M. Topological photonics. Nat Photon, 2014, 8: 821–829

    Article  Google Scholar 

  21. Segev M, Bandres M A. Topological photonics: Where do we go from here? Nanophotonics, 2020, 10: 425–434

    Article  Google Scholar 

  22. St-Jean P, Goblot V, Galopin E, et al. Lasing in topological edge states of a one-dimensional lattice. Nat Photon, 2017, 11: 651–656

    Article  Google Scholar 

  23. Bandres M A, Wittek S, Harari G, et al. Topological insulator laser: Experiments. Science, 2018, 359: eaar4005

    Article  Google Scholar 

  24. Chen Y, He X T, Cheng Y J, et al. Topologically protected valley-dependent quantum photonic circuits. Phys Rev Lett, 2021, 126: 230503

    Article  Google Scholar 

  25. Mukherjee S, Chandrasekharan H K, Öhberg P, et al. State-recycling and time-resolved imaging in topological photonic lattices. Nat Commun, 2018, 9: 4209

    Article  Google Scholar 

  26. Arkinstall J, Teimourpour M H, Feng L, et al. Topological tight-binding models from nontrivial square roots. Phys Rev B, 2017, 95: 165109

    Article  Google Scholar 

  27. Ezawa M. Systematic construction of square-root topological insulators and superconductors. Phys Rev Res, 2020, 2: 033397

    Article  Google Scholar 

  28. Kremer M, Petrides I, Meyer E, et al. A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages. Nat Commun, 2020, 11: 907

    Article  Google Scholar 

  29. Yan W, Song D, Xia S, et al. Realization of second-order photonic square-root topological insulators. ACS Photon, 2021, 8: 3308–3314

    Article  Google Scholar 

  30. Lin Z, Ke S, Zhu X, et al. Square-root non-Bloch topological insulators in non-Hermitian ring resonators. Opt Express, 2021, 29: 8462

    Article  Google Scholar 

  31. Song L, Yang H, Cao Y, et al. Realization of the square-root higherorder topological insulator in electric circuits. Nano Lett, 2020, 20: 7566–7571

    Article  Google Scholar 

  32. Yan M, Huang X, Luo L, et al. Acoustic square-root topological states. Phys Rev B, 2020, 102: 180102

    Article  Google Scholar 

  33. Marques A M, Madail L, Dias R G. One-dimensional 2n-root topological insulators and superconductors. Phys Rev B, 2021, 103: 235425

    Article  Google Scholar 

  34. Marques A M, Dias R G. 2n-root weak, Chern, and higher-order topological insulators, and 2n-root topological semimetals. Phys Rev B, 2021, 104: 165410

    Article  Google Scholar 

  35. Ni X, Xiao Z, Khanikaev A B, et al. Robust multiplexing with topolectrical higher-order chern insulators. Phys Rev Appl, 2020, 13: 064031

    Article  Google Scholar 

  36. Zhang Z, Long H, Liu C, et al. Deep-subwavelength holey acoustic second-order topological insulators. Adv Mater, 2019, 31: 1904682

    Article  Google Scholar 

  37. Su W P, Schrieffer J R, Heeger A J. Solitons in polyacetylene. Phys Rev Lett, 1979, 42: 1698–1701

    Article  Google Scholar 

  38. Ballato J, Dragic P D. Glass: The carrier of light—Part II—A brief look into the future of optical fiber. Int J Appl Glass Sci, 2021, 12: 3–24

    Article  Google Scholar 

  39. Dudley J M, Murdoch S G. Intermodal dispersion and polarization mode dispersion measurements in optical fibers using a self-modelocked Ti:sapphire laser. Optical Fiber Tech, 1996, 2: 80–84

    Article  Google Scholar 

  40. Cheng Y, Sugioka K, Midorikawa K, et al. Control of the cross-sectional shape of a hollow microchannel embedded in photo-structurable glass by use of a femtosecond laser. Opt Lett, 2003, 28: 55–57

    Article  Google Scholar 

  41. Ams M, Marshall G D, Spence D J, et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express, 2005, 13: 5676–5681

    Article  Google Scholar 

  42. Moh K J, Tan Y Y, Yuan X C, et al. Influence of diffraction by a rectangular aperture on the aspect ratio of femtosecond direct-write waveguides. Opt Express, 2005, 13: 7288–7297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Kang or GuoPing Dong.

Additional information

This work was supported by the Key R&D Program of Guangzhou (Grant No. 202007020003), Guangzhou Basic and Applied Basic Research (Grant Nos. 202201010407, 202201010428), the Basic and Applied Basic Research Foundation of Guangdong Province (Grant Nos. 2021A1515110475, 2022A1515011289, 2023A1515012666), and the National Natural Science Foundation of China (Grant Nos. 62122027, 52002128, 62075063, 51772101, 51872095, 12204179, 52202004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Zhang, Q., Yang, D. et al. Realization of one-dimensional 2n-root topological states in photonic lattices. Sci. China Technol. Sci. 67, 98–104 (2024). https://doi.org/10.1007/s11431-022-2347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2347-4

Navigation