Skip to main content
Log in

A comprehensive review of recent advancements and developments in heat exchanger network synthesis techniques

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The rapid development of computational technology and the increasing energy demand have improved heat exchanger network (HEN) synthesis. The HEN synthesis involves several optimizations of matches, distributions of heat loads, and stream splitting of heat units. Thus, obtaining good results at high efficiency has been the main standard for evaluating the techniques in the research area of HEN synthesis. This paper first summarizes and analyzes the main contributions of the existing HEN synthesis techniques. To compare related data quantitively, information on ten typical cases is presented in this paper. Furthermore, recently improved solutions for commonly encountered existing literature cases demonstrate the evolution and competition trends in the field of HEN synthesis. The comparison data presented in this paper not only provide a useful reference for future research but also present the optimization directions. Based on the findings of this study, it is noted that there is still a large room for improvement, and current approaches are incapable of dealing with all HEN cases. Moreover, it is still difficult to escape a local optimum and overcome structural constraints when seeking the global optimum. As a follow-up to the current work, the parallel computing mode and adaptively coordinating the ratio of global and local searching abilities are major development trends for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morar M, Agachi P S. Review: Important contributions in development and improvement of the heat integration techniques. Comput Chem Eng, 2010, 34: 1171–1179

    Article  Google Scholar 

  2. Gundepsen T, Naess L. The synthesis of cost optimal heat exchanger networks. Comput Chem Eng, 1988, 12: 503–530

    Article  Google Scholar 

  3. Furman K C, Sahinidis N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century. Ind Eng Chem Res, 2002, 41: 2335–2370

    Article  Google Scholar 

  4. Furman K C, Sahinidis N V. Computational complexity of heat exchanger network synthesis. Comput Chem Eng, 2001, 25: 1371–1390

    Article  Google Scholar 

  5. Gundersen T, Grossmann I E. Improved optimization strategies for automated heat exchanger network synthesis through physical in-sights. Comput Chem Eng, 1990, 14: 925–944

    Article  Google Scholar 

  6. Grossmann I E. Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng, 2002, 3: 227–252

    Article  MathSciNet  Google Scholar 

  7. Lin M H, Tsai J F, Yu C S. A review of deterministic optimization methods in engineering and management. Math Problems Eng, 2012, 2012: 1–15

    MathSciNet  Google Scholar 

  8. Hwa C S. Mathematical formulation and optimization of heat exchanger network using separable programming. AIChE-Intern Chem Eng Symp Ser, 1965, 4: 101

    Google Scholar 

  9. Masso A H, Rudd D F. The synthesis of system designs. II. Heuristic structuring. AIChE J, 1969, 15: 10–17

    Article  Google Scholar 

  10. Linnhoff B, Flower J R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE J, 1978, 24: 633–642

    Article  Google Scholar 

  11. Linnhoff B, Flower J R. Synthesis of heat exchanger networks: II. Evolutionary generation of networks with various criteria of optimality. AIChE J, 1978, 24: 642–654

    Article  Google Scholar 

  12. Linnhoff B, Mason D R, Wardle I. Understanding heat exchanger networks. Comput Chem Eng, 1979, 3: 295–302

    Article  Google Scholar 

  13. Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks. Chem Eng Sci, 1983, 38: 745–763

    Article  Google Scholar 

  14. Akbarnia M, Amidpour M, Shadaram A. A new approach in pinch technology considering piping costs in total cost targeting for heat exchanger network. Chem Eng Res Des, 2009, 87: 357–365

    Article  Google Scholar 

  15. Okechukwu O J, Sarafa Azeez O. Area targeting of heat exchanger network (HEN) using a modified pinch technique. IOP Conf Ser-Earth Environ Sci, 2018, 173: 012003

    Article  Google Scholar 

  16. Gadalla M A. A new graphical method for Pinch analysis applications: Heat exchanger network retrofit and energy integration. Energy, 2015, 81: 159–174

    Article  Google Scholar 

  17. Cucek L, Boldyryev S, Kleines J J, et al. Approaches for retrofitting heat exchanger networks within processes and total sites. J Cleaner Product, 2019, 211: 884–894

    Article  Google Scholar 

  18. Bonhivers J C, Svensson E, Berntsson T, et al. Comparison between pinch analysis and bridge analysis to retrofit the heat exchanger network of a kraft pulp mill. Appl Thermal Eng, 2014, 70: 369–379

    Article  Google Scholar 

  19. Lai Y Q, Wan Alwi S R, Manan Z A. Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot. Energy, 2020, 203: 117766–117782

    Article  Google Scholar 

  20. Bonhivers J C, Moussavi A, Alva-Argaez A, et al. Linking pinch analysis and bridge analysis to save energy by heat-exchanger network retrofit. Appl Thermal Eng, 2016, 106: 443–472

    Article  Google Scholar 

  21. Foo D C Y, Ng D K S, Chew I M L, et al. A pinch-based approach for the synthesis of chilled water network. Chem Eng Trans, 2014, 39: 1057–1062

    Google Scholar 

  22. Zhang Q, Yang M, Liu G, et al. Relative concentration based pinch analysis for targeting and design of hydrogen and water networks with single contaminant. J Cleaner Product, 2016, 112: 4799–4814

    Article  Google Scholar 

  23. Souifi M, Souissi A. Simultaneous water and energy saving in cooling water networks using pinch approach. Mater Today-Proc, 2019, 13: 1115–1124

    Article  Google Scholar 

  24. Kamat S, Bandyopadhyay S. Bi-objective pinch analysis of heat integrated water conservation networks. J Cleaner Product, 2021, 312: 127676–127695

    Article  Google Scholar 

  25. Song R, Tang Q, Wang Y, et al. The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm. Energy, 2017, 140: 1018–1029

    Article  Google Scholar 

  26. Klemes J J, Varbanov P S, Walmsley T G, et al. New directions in the implementation of pinch methodology (PM). Renew Sustain Energy Rev, 2018, 98: 439–468

    Article  Google Scholar 

  27. Cerda J, Westerberg A W, Mason D, et al. Minimum utility usage in heat exchanger network synthesis: A transportation problem. Chem Eng Sci, 1983, 38: 373–387

    Article  Google Scholar 

  28. Cerda J, Westerburg A W. Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations. Chem Eng Sci, 1983, 38: 1723–1740

    Article  Google Scholar 

  29. Papoulias S A, Grossmann I E. A structural optimization approach in process synthesis—I. Comput Chem Eng, 1983, 7: 695–706

    Article  Google Scholar 

  30. Papoulias S A, Grossmann I E. A structural optimization approach in process synthesis—II. Comput Chem Eng, 1983, 7: 707–721

    Article  Google Scholar 

  31. Papoulias S A, Grossmann I E. A structural optimization approach in process synthesis—III. Comput Chem Eng, 1983, 7: 723–734

    Article  Google Scholar 

  32. EL-Temtamy S A, Gabr E M. Design of optimum flexible heat exchanger networks for multiperiod process. Egyptian J Pet, 2012, 21: 109–117

    Article  Google Scholar 

  33. Chen Y, Grossmann I E, Miller D C. Computational strategies for large-scale MILP transshipment models for heat exchanger network synthesis. Comput Chem Eng, 2015, 82: 68–83

    Article  Google Scholar 

  34. Hong X, Liao Z, Jiang B, et al. New transshipment type MINLP model for heat exchanger network synthesis. Chem Eng Sci, 2017, 173: 537–559

    Article  Google Scholar 

  35. Floudas C A, Ciric A R, Grossmann I E. Automatic synthesis of optimum heat exchanger network configurations. AIChE J, 1986, 32: 276–290

    Article  Google Scholar 

  36. Kim S Y, Bagajewicz M. Global optimization of heat exchanger networks using a new generalized superstructure. Chem Eng Sci, 2016, 147: 30–46

    Article  Google Scholar 

  37. Faria D C, Bagajewicz M J. Novel bound contraction procedure for global optimization of bilinear MINLP problems with applications to water management problems. Comput Chem Eng, 2011, 35: 446–455

    Article  Google Scholar 

  38. Huang K F, Karimi I A. Simultaneous synthesis approaches for cost-effective heat exchanger networks. Chem Eng Sci, 2013, 98: 231–245

    Article  Google Scholar 

  39. Duran M A, Grossmann I E. Simultaneous optimization and heat integration of chemical processes. AIChE J, 1986, 32: 123–138

    Article  Google Scholar 

  40. Anantharamen R, Gundersen T. Developments in the sequential framework for heat exchanger network synthesis of industrial size problems. Computer Aided Chem Eng, 2006, 21: 725–730

    Article  Google Scholar 

  41. Anantharaman R, Nastad I, Nygreen B, et al. The sequential framework for heat exchanger network synthesis—The minimum number of units sub-problem. Comput Chem Eng, 2010, 34: 1822–1830

    Article  Google Scholar 

  42. Ziyatdinov N N, Emel’yanov I I, Chen Q, et al. Optimal heat exchanger network synthesis by sequential splitting of process streams. Comput Chem Eng, 2020, 142: 107042–107059

    Article  Google Scholar 

  43. Martelli E, Elsido C, Mian A, et al. MINLP model and two-stage algorithm for the simultaneous synthesis of heat exchanger networks, utility systems and heat recovery cycles. Comput Chem Eng, 2017, 106: 663–689

    Article  Google Scholar 

  44. Elsido C, Martelli E, Grossmann I E. A bilevel decomposition method for the simultaneous heat integration and synthesis of steam/organic Rankine cycles. Comput Chem Eng, 2019, 128: 228–245

    Article  Google Scholar 

  45. Mistry M, Misener R. Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference. Comput Chem Eng, 2016, 94: 1–17

    Article  Google Scholar 

  46. Najman J, Mitsos A. Convergence order of McCormick relaxations of LMTD function in heat exchanger networks. Computer Aided Process Eng, 2016, 38: 1605–1610

    Article  Google Scholar 

  47. Elsido C, Cremonesi A, Martelli E. A novel sequential synthesis algorithm for the integrated optimization of Rankine cycles and heat exchanger networks. Appl Thermal Eng, 2021, 192: 116594–116609

    Article  Google Scholar 

  48. Escobar M, Trierweiler J O, Grossmann I E. A heuristic Lagrangean approach for the synthesis of multiperiod heat exchanger networks. Appl Thermal Eng, 2014, 63: 177–191

    Article  Google Scholar 

  49. Mian A, Martelli E, Maréchal F. Framework for the multiperiod sequential synthesis of heat exchanger networks with selection, design, and scheduling of multiple utilities. Ind Eng Chem Res, 2016, 55: 168–186

    Article  Google Scholar 

  50. Floudas C A, Grossmann I E. Synthesis of flexible heat exchanger networks for multiperiod operation. Comput Chem Eng, 1986, 10: 153–168

    Article  Google Scholar 

  51. Yoro K O, Isafiade A J, Daramola M O. Multi-period heat exchanger network synthesis with temperature intervals and uncertain disturbances. Chem Eng Trans, 2019, 76: 1039–1044

    Google Scholar 

  52. Kang L X, Liu Y Z, Hou J H. Synthesis of multi-period heat exchanger network considering characteristics of sub-periods. Chem Eng Trans, 2015, 45: 49–54

    Google Scholar 

  53. Yuan X, Pibouleau L, Domenech S. Experiments in process synthesis via mixed-integer programming. Chem Eng Process, 1989, 25: 99116

    Article  Google Scholar 

  54. Floudas C A, Ciric A R. Strategies for overcoming uncertainties in heat exchanger network synthesis. Comput Chem Eng, 1989, 13: 1133–1152

    Article  Google Scholar 

  55. Ciric A R, Floudas C A. Heat exchanger network synthesis without decomposition. Comput Chem Eng, 1991, 15: 385–396

    Article  Google Scholar 

  56. Huang K F, Karimi I A. Heat exchanger network synthesis using a hyperstructure of stagewise stream superstructures. Computer Aided Chem Eng, 2012, 31: 1552–1556

    Article  Google Scholar 

  57. Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration—I. Area and energy targeting and modeling of multi-stream exchangers. Comput Chem Eng, 1990, 14: 1151–1164

    Article  Google Scholar 

  58. Yee T F, Grossmann I E. Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. Comput Chem Eng, 1990, 14: 1165–1184

    Article  Google Scholar 

  59. Chen J J J. Comments on improvements on a replacement for the logarithmic mean. Chem Eng Sci, 1987, 42: 2488–2489

    Article  Google Scholar 

  60. Zamora J M, Grossmann I E. A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Comput Chem Eng, 1998, 22: 367–384

    Article  Google Scholar 

  61. Björk K M, Westerlund T. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption. Comput Chem Eng, 2002, 26: 1581–1593

    Article  Google Scholar 

  62. Paterson W R. A replacement for the logarithmic mean. Chem Eng Sci, 1984, 39: 1635–1636

    Article  Google Scholar 

  63. Chen S, Cui G. Uniformity factor of temperature difference in heat exchanger networks. Appl Thermal Eng, 2016, 102: 1366–1373

    Article  Google Scholar 

  64. Pavão L V, Costa C B B, Ravagnani M A S S, et al. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization. AIChE J, 2017, 63: 1582–1601

    Article  Google Scholar 

  65. Pavão L V, Costa C B B, Ravagnani M A S S. A new stage-wise superstructure for heat exchanger network synthesis considering substages, sub-splits and cross flows. Appl Thermal Eng, 2018, 143: 719–735

    Article  Google Scholar 

  66. Bao Z K, Cui G M, Cao C, et al. Heat exchanger network optimization based on an inner utility placement strategy. Chin J Comput Phys, 2018, 12: 1–15

    Google Scholar 

  67. Rathjens M, Fieg G. A novel hybrid strategy for cost-optimal heat exchanger network synthesis suited for large-scale problems. Appl Thermal Eng, 2020, 167: 114771

    Article  Google Scholar 

  68. Zamora J M, Hidalgo-Munoz M G, Pedroza-Robles L E, et al. Optimization and utilities relocation approach for the improvement of heat exchanger network designs. Chem Eng Res Des, 2020, 156: 209–225

    Article  Google Scholar 

  69. Jongsuwat P, Suriyapraphadilok U, Bagajewicz M. New heat exchanger network design model. In: Proceedings of the 17th Conference on Process Integration, Modelling and Optimization for Energy Saving and Pollution Reduction. 2014, 39: 23–27

  70. Kim S Y, Jongsuwat P, Suriyapraphadilok U, et al. Global optimization of heat exchanger networks. Part 2: Stages/Substages superstructure. Indust Eng Chem Res, 2017, 56: 5944–5957

    Article  Google Scholar 

  71. Na J, Jung J, Park C, et al. Simultaneous synthesis of a heat exchanger network with multiple utilities using utility substages. Comput Chem Eng, 2015, 79: 70–79

    Article  Google Scholar 

  72. Isafiade A, Bogataj M, Fraser D, et al. Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities. Chem Eng Sci, 2015, 127: 175–188

    Article  Google Scholar 

  73. Pavão L V, Costa C B B, Ravagnani M A S S. An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement. Ind Eng Chem Res, 2018, 57: 2560–2573

    Article  Google Scholar 

  74. Lu Z, Cui G M, Zhang Q, et al. Application of chessboard model in heat exchanger networks optimization. Chem Eng (China), 2007, 35: 16–19

    Google Scholar 

  75. He Q, Cui G. A principle of stream arrangement based on uniformity factor for heat exchanger networks synthesis. Appl Thermal Eng, 2013, 61: 93–100

    Article  Google Scholar 

  76. Zhang H, Cui G, Xiao Y, et al. A novel simultaneous optimization model with efficient stream arrangement for heat exchanger network synthesis. Appl Thermal Eng, 2017, 110: 1659–1673

    Article  Google Scholar 

  77. Xiao Y, Kayange H A, Cui G, et al. Non-structural model of heat exchanger network: Modeling and optimization. Int J Heat Mass Transfer, 2019, 140: 752–766

    Article  Google Scholar 

  78. Kayange H A, Cui G, Xu Y, et al. Non-structural model for heat exchanger network synthesis allowing for stream splitting. Energy, 2020, 201: 117461–117487

    Article  Google Scholar 

  79. Xiao Y. Global optimization methods and superstructure model for heat integration of heat exchanger networks (in Chinese). Dissertation for Doctoral Degree. Shanghai: University of Shanghai for Science & Technology, 2018

    Google Scholar 

  80. Xu Y, Heri A K, Xiao Y, et al. A new nodes-based model for optimization of heat exchanger network synthesis. J Therm Sci, 2021, 30: 451–464

    Article  Google Scholar 

  81. Xu Y, Kayange H A, Cui G. A nodes-based non-structural model considering a series structure for heat exchanger network synthesis. Processes, 2020, 8: 695–711

    Article  Google Scholar 

  82. Stubbs R A, Mehrotra S. A branch-and-cut method for 0–1 mixed convex programming. Math Programm, 1999, 86: 515–532

    Article  MathSciNet  Google Scholar 

  83. Zamora J M, Grossmann I E. A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J Glob Optim, 1999, 14: 217–249

    Article  MathSciNet  Google Scholar 

  84. Ryoo H S, Sahinidis N V. Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput Chem Eng, 1995, 19: 551–566

    Article  Google Scholar 

  85. Faria D C, Kim S Y, Bagajewicz M J. Global optimization of the stage-wise superstructure model for heat exchanger networks. Ind Eng Chem Res, 2015, 54: 1595–1604

    Article  Google Scholar 

  86. Viswanathan J, Grossmann I E. A combined penalty function and outer-approximation method for MINLP optimization. Comput Chem Eng, 1990, 14: 769–782

    Article  Google Scholar 

  87. Bergamini M L, Scenna N J, Aguirre P A. Global optimal structures of heat exchanger networks by piecewise relaxation. Ind Eng Chem Res, 2007, 46: 1752–1763

    Article  Google Scholar 

  88. Pei G, Li Y, Li J, et al. Performance evaluation of a micro turboexpander for application in low-temperature solar electricity generation. J Zhejiang Univ Sci A, 2011, 12: 207–213

    Article  Google Scholar 

  89. Tu W M, Cui G M, Hu X B, et al. Heat exchanger network optimized with filling and tunneling function. J Eng Thermophys, 2011, 32: 1225–1227

    Google Scholar 

  90. Hu X B, Cui G M, Tu W M, et al. Cutting-plane method with function approximation for global optimization of heat exchanger networks. J Eng Thermophys, 2010, 31: 995–997

    Google Scholar 

  91. Guo C Y, Cui G M. An optimization method-pattern search algorithm for synchronous synthesis ofheat exchanger network. Univ Shanghai Sci Tech J, 2010, 32: 31–35

    Google Scholar 

  92. Bao Y B, Cui G M, Xiao Y, et al. Mini-max alternate optimization algorithm for global heat integration of heat exchanger networks. Chem Industry Eng Progress, 2017, 36: 426–434

    Google Scholar 

  93. Huang K, Karimi I A. Efficient algorithm for simultaneous synthesis of heat exchanger networks. Chem Eng Sci, 2014, 105: 53–68

    Article  Google Scholar 

  94. Dolan W B, Cummings P T, LeVan M D. Process optimization via simulated annealing: Application to network design. AIChE J, 1989, 35: 725–736

    Article  Google Scholar 

  95. Yerramsetty K M, Murty C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution. Comput Chem Eng, 2008, 32: 1861–1876

    Article  Google Scholar 

  96. Kennedy J, Eberhart R. Swarm Intelligence. London: Academic Press, 2001

    Google Scholar 

  97. Silva A P, Ravagnani M A S S, Biscaia Jr. E C, et al. Optimal heat exchanger network synthesis using particle swarm optimization. Optim Eng, 2010, 11: 459–470

    Article  Google Scholar 

  98. Wang J, Cui G, Xiao Y, et al. Bi-level heat exchanger network synthesis with evolution method for structure optimization and memetic particle swarm optimization for parameter optimization. Eng Optim, 2017, 49: 401–416

    Article  Google Scholar 

  99. Xiao Y, Cui G. A novel random walk algorithm with compulsive evolution for heat exchanger network synthesis. Appl Thermal Eng, 2017, 115: 1118–1127

    Article  Google Scholar 

  100. Pavão L V, Miranda C B, Costa C B B, et al. Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach. Energy, 2018, 142: 356–372

    Article  Google Scholar 

  101. Pavão L V, Miranda C B, Costa C B B, et al. Synthesis of multiperiod heat exchanger networks with timesharing mechanisms using meta-heuristics. Appl Thermal Eng, 2018, 128: 637–652

    Article  Google Scholar 

  102. Pavão L V, Costa C B B, Ravagnani M A S S, et al. Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach. Appl Energy, 2017, 203: 304–320

    Article  Google Scholar 

  103. Ravagnani M A S S, Silva A P, Arroyo P A, et al. Heat exchanger network synthesis and optimisation using genetic algorithm. Appl Thermal Eng, 2005, 25: 1003–1017

    Article  Google Scholar 

  104. Khorasany R M, Fesanghary M. A novel approach for synthesis of cost-optimal heat exchanger networks. Comput Chem Eng, 2009, 33: 1363–1370

    Article  Google Scholar 

  105. Brandt C, Fieg G, Luo X. Efficient synthesis of heat exchanger networks combining heuristic approaches with a genetic algorithm. Heat Mass Transfer, 2011, 47: 1019–1026

    Article  Google Scholar 

  106. Yu H, Fang H, Yao P, et al. A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration. Comput Chem Eng, 2000, 24: 2023–2035

    Article  Google Scholar 

  107. Luo X, Wen Q Y, Fieg G. A hybrid genetic algorithm for synthesis of heat exchanger networks. Comput Chem Eng, 2009, 33: 1169–1181

    Article  Google Scholar 

  108. Zhaoyi H, Liang Z, Hongchao Y, et al. Simultaneous synthesis of structural-constrained heat exchanger networks with and without stream splits. Can J Chem Eng, 2013, 91: 830–842

    Article  Google Scholar 

  109. Pavão L V, Costa C B B, Ravagnani M A S S. Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing. Comput Chem Eng, 2016, 94: 370–386

    Article  Google Scholar 

  110. Aguitoni M C, Pavão V, Siqueira P H, et al. Heat exchanger network synthesis using genetic algorithm and differential evolution. Comput Chem Eng, 2018, 117: 82–96

    Article  Google Scholar 

  111. Aguitoni M C, Pavão L V, Antonio da Silva Sá Ravagnani M. Heat exchanger network synthesis combining simulated annealing and differential evolution. Energy, 2019, 181: 654–664

    Article  Google Scholar 

  112. Peng F, Cui G. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm. Appl Thermal Eng, 2015, 78: 136–149

    Article  Google Scholar 

  113. Bao Z, Cui G, Chen J, et al. A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis. Energy, 2018, 152: 694–708

    Article  Google Scholar 

  114. Caballero J A, Pavão V, Costa C B B, et al. A novel sequential approach for the design of heat exchanger networks. Front Chem Eng, 2021, 3: 1–3

    Article  Google Scholar 

  115. Zhang C, Cui G, Peng F. A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis. Appl Thermal Eng, 2016, 104: 707–719

    Article  Google Scholar 

  116. Liu P, Cui G, Xiao Y, et al. A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis. Energy, 2018, 143: 12–24

    Article  Google Scholar 

  117. Xiao Y, Kayange H A, Cui G. Heat integration of energy system using an integrated node-wise non-structural model with uniform distribution strategy. Int J Heat Mass Transfer, 2020, 152: 119497

    Article  Google Scholar 

  118. Xu Y, Cui G, Deng W, et al. Relaxation strategy for heat exchanger network synthesis with fixed capital cost. Appl Thermal Eng, 2019, 152: 184–195

    Article  Google Scholar 

  119. Xiao Y, Ambonisye Kayange H, Cui G, et al. Population-diversity enhancement strategy against clustering of individuals in stochastic method for heat exchanger network synthesis. Numer Heat Transfer Part A-Appl, 2019, 76: 139–159

    Article  Google Scholar 

  120. Linnhoff B, Ahmad S. Super targeting, or the optimization of heat exchanger networks prior to design. In: Proceedings of the World Congress, Chemical II Engineering. Tokyo, 1986

  121. Linnhoff B, Ahmad S. Cost optimum heat exchanger networks—1. Minimum energy and capital using simple models for capital cost. Comput Chem Eng, 1990, 14: 729–750

    Article  Google Scholar 

  122. Huang K F, Al-mutairi E M, Karimi I A. Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing. Chem Eng Sci, 2012, 73: 30–43

    Article  Google Scholar 

  123. Hasan M M F, Jayaraman G, Karimi I A, et al. Synthesis of heat exchanger networks with nonisothermal phase changes. AIChE J, 2009, 56: 185–192

    Google Scholar 

  124. Kayange H A, Cui G, Xu Y, et al. Synthesis of stream-split heat exchanger networks using non-structural model considering serial equipment in stream branches and submixing of substreams. Can J Chem Eng, 2022, 100: 933–948

    Article  Google Scholar 

  125. Grossmann I E, Sargent R W H. Optimum design of heat exchanger networks. Comput Chem Eng, 1978, 2: 1–7

    Article  Google Scholar 

  126. Luo L, Wei G F, Yao P J, et al. Identification and construction of multistream heat exchanger network. Comput Appl Chem, 2004, 21: 333–338

    Google Scholar 

  127. Lewin D R. A generalized method for HEN synthesis using stochastic optimization—II. Comput Chem Eng, 1998, 22: 1387–1405

    Article  Google Scholar 

  128. Nńñez-Serna R I, Zamora J M. NLP model and stochastic multi-start optimization approach for heat exchanger networks. Appl Thermal Eng, 2016, 94: 458–471

    Article  Google Scholar 

  129. Pavão V, Costa C B B, Ravagnani M A S S. Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization. Chem Eng Sci, 2017, 158: 96–107

    Article  Google Scholar 

  130. Toffolo A. The synthesis of cost optimal heat exchanger networks with unconstrained topology. Appl Thermal Eng, 2009, 29: 3518–3528

    Article  Google Scholar 

  131. Liang Z, Hongchao Y, Zhaoyi H. Simultaneous synthesis of heat exchanger network with the non-isothermal mixing. Int J Low-Carbon Tech, 2016, 11: 240–247

    Article  Google Scholar 

  132. Chen J, Cui G, Duan H. Multipopulation differential evolution algorithm based on the opposition-based learning for heat exchanger network synthesis. Numer Heat Transfer Part A-Appl, 2017, 72: 126–140

    Article  Google Scholar 

  133. Fieg G, Luo X, Jeżowski J. A monogenetic algorithm for optimal design of large-scale heat exchanger networks. Chem Eng Processing-Process Intensification, 2009, 48: 1506–1516

    Article  Google Scholar 

  134. Zhang H, Cui G. Optimal heat exchanger network synthesis based on improved cuckoo search via Lévy flights. Chem Eng Res Des, 2018, 134: 62–79

    Article  Google Scholar 

  135. Xiao Y, Cui G, Sun T, et al. An integrated random walk algorithm with compulsive evolution and fine-search strategy for heat exchanger network synthesis. Appl Thermal Eng, 2018, 128: 861–876

    Article  Google Scholar 

  136. Xiao Y, Sun T, Cui G. Enhancing strategy promoted by large step length for the structure optimization of heat exchanger networks. Appl Thermal Eng, 2020, 173: 115199–115215

    Article  Google Scholar 

  137. Ahmad S. Heat exchanger networks: Cost tradeoffs in energy and capital. Dissertation for Doctoral Degree. Manchester: University of Manchester Institute of Science and Technology (UMIST). 1985

    Google Scholar 

  138. Xu Y, Cui G, Han X, et al. Optimization route arrangement: A new concept to achieve high efficiency and quality in heat exchanger network synthesis. Int J Heat Mass Transfer, 2021, 178: 121622–121641

    Article  Google Scholar 

  139. Björk K M, Pettersson F. Optimization of large-scale heat exchanger network synthesis problems. In: Proceedings of the IASTED International Conference on Modelling and Simulation. Palm Springs, 2003. 313–318

  140. Björk K M, Nordman R. Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods. Chem Eng Process-Process Intens, 2005, 44: 869–876

    Article  Google Scholar 

  141. Escobar M, Trierweiler J O. Optimal heat exchanger network synthesis: A case study comparison. Appl Thermal Eng, 2013, 51: 801–826

    Article  Google Scholar 

  142. Xu Y, Liu L, Cui G. A flexible model with an adjustable number of nodes for efficient and high-quality heat exchanger network synthesis. Ind Eng Chem Res, 2020, 59: 14834–14849

    Article  Google Scholar 

  143. Xiao W, Dong H, Li X, et al. Synthesis of large-scale multistream heat exchanger networks based on stream Pseudo temperature. Chin J Chem Eng, 2006, 14: 574–583

    Article  Google Scholar 

  144. Laukkanen T, Fogelholm C J. A bilevel optimization method for simultaneous synthesis of medium-scale heat exchanger networks based on grouping of process streams. Comput Chem Eng, 2011, 35: 2389–2400

    Article  Google Scholar 

  145. Laukkanen T, Tveit T M, Ojalehto V, et al. Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method. Appl Thermal Eng, 2012, 48: 301–316

    Article  Google Scholar 

  146. Sorsak A, Kravanja Z. MINLP retrofit of heat exchanger networks comprising different exchanger types. Comput Chem Eng, 2004, 28: 235–251

    Article  Google Scholar 

  147. Nemet A, Isafiade A J, Klemes J J, et al. Two-step MILP/MINLP approach for the synthesis oflarge-scale HENs. Chem Eng Sci, 2019, 197: 432–448

    Article  Google Scholar 

  148. Ernst P, Fieg G, Luo X. Efficient synthesis of large-scale heat exchanger networks using monogenetic algorithm. Heat Mass Transfer, 2010, 46: 1087–1096

    Article  Google Scholar 

  149. Zhang C, Cui G, Chen S. An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks. Appl Thermal Eng, 2016, 107: 565–574

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoMin Cui.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21978171 and 51976126), and the Capacity Building Plan for some Non-military Universities and Colleges of Shanghai Scientific Committee (Grant Nos. 16060502600 and 20060502000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, W., Zhang, L. et al. A comprehensive review of recent advancements and developments in heat exchanger network synthesis techniques. Sci. China Technol. Sci. 67, 335–356 (2024). https://doi.org/10.1007/s11431-022-2337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2337-1

Navigation