Skip to main content
Log in

Monolayer MoS2-based transistors with low contact resistance by inserting ultrathin Al2O3 interfacial layer

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDCs) are promising high performance electronic materials due to their interesting semiconductor properties. However, it is acknowledged that the effective electrical contact between TMDCs-layered materials and metals remains one of the major challenges. In this work, the homogeneous monolayer MoS2 films with high crystalline quality were prepared by chemical vapor deposition method on SiO2/Si substrates. The back-gate field-effect transistors (FETs) were fabricated by inserting an ultrathin Al2O3 interlayer between the metal electrodes and MoS2 nanosheets. With the addition of an ultrathin 0.8 nm Al2O3 interlayer, the contact resistance decreased dramatically from 59.9 to 1.3 kΩ μm and the Schottky barrier height (SBH) dropped from 102 to 27 meV compared with devices without the Al2O3 interlayer. At the same time, the switching ratio increased from ∼106 to ∼108, and both the on-current and field-effect mobility were greatly improved. We find that the ultrathin Al2O3 interlayer can not only reduce the SBH to alleviate the Fermi level pinning phenomenon at the interface, but also protect the channel materials from the influence of air and moisture as a covering layer. In addition, the lattice and band structures of Al2O3/MoS2 film were calculated and analyzed by first-principles calculation. It is found that the total density of states of the Al2O3/MoS2 film exhibits interfacial polarized metals property, which proves the higher carrier transport characteristics. FETs with Al2O3 interlayers have excellent stability and repeatability, which can provide effective references for future low power and high performance electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank D J, Dennard R H, Nowak E, et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc IEEE, 2001, 89: 259–288

    Article  Google Scholar 

  2. Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898–2926

    Article  Google Scholar 

  3. Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712

    Article  Google Scholar 

  4. Feng Y, Zhang K, Wang F, et al. Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H2 atmosphere. ACS Appl Mater Interfaces, 2015, 7: 22587–22593

    Article  Google Scholar 

  5. Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6: 74–80

    Article  Google Scholar 

  6. Hao D P, Yang R X, Yi N, et al. Highly sensitive piezoresistive pressure sensors based on laser-induced graphene with molybdenum disulfide nanoparticles. Sci China Tech Sci, 2021, 64: 2408–2414

    Article  Google Scholar 

  7. Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photo-detectors based on monolayer MoS2. Nat Nanotech, 2013, 8: 497–501

    Article  Google Scholar 

  8. Lee M H, Cho Y, Byun K E, et al. Two-dimensional materials inserted at the metal/semiconductor interface: Attractive candidates for semiconductor device contacts. Nano Lett, 2018, 18: 4878–4884

    Article  Google Scholar 

  9. Tung R T. The physics and chemistry of the Schottky barrier height. Appl Phys Rev, 2014, 1: 011304

    Article  Google Scholar 

  10. Shen P C, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593: 211–217

    Article  Google Scholar 

  11. Sotthewes K, van Bremen R, Dollekamp E, et al. Universal Fermi-level pinning in transition-metal dichalcogenides. J Phys Chem C, 2019, 123: 5411–5420

    Article  Google Scholar 

  12. Khalil H M W, Khan M F, Eom J, et al. Highly stable and tunable chemical doping ofmultilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl Mater Interfaces, 2015, 7: 23589–23596

    Article  Google Scholar 

  13. Kiriya D, Tosun M, Zhao P, et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J Am Chem Soc, 2014, 136: 7853–7856

    Article  Google Scholar 

  14. Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13: 1128–1134

    Article  Google Scholar 

  15. Liu X, Gao J, Zhang G, et al. MoS2-graphene in-plane contact for high interfacial thermal conduction. Nano Res, 2017, 10: 2944–2953

    Article  Google Scholar 

  16. McClellan C J, Yalon E, Smithe K K H, et al. High current density in monolayer MoS2 doped by AlOx. ACS Nano, 2015, 15: 1587–1596

    Article  Google Scholar 

  17. Guo Y, Sun Y, Tang A, et al. Field-effect at electrical contacts to two-dimensional materials. Nano Res, 2021, 14: 4894–4900

    Article  Google Scholar 

  18. Lin L, Robertson J, Clark S J. Shifting Schottky barrier heights with ultra-thin dielectric layers. Microelectron Eng, 2011, 88: 1461–1463

    Article  Google Scholar 

  19. Nishimura T, Kita K, Toriumi A. A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film. Appl Phys Express, 2008, 1: 051406

    Article  Google Scholar 

  20. Hu J, Saraswat K C, Wong H S P. Metal/III-V Schottky barrier height tuning for the design of nonalloyed III-V field-effect transistor source/drain contacts. J Appl Phys, 2010, 107: 063712

    Article  Google Scholar 

  21. Zheng S, Yang W, Sun Q Q, et al. Schottky barrier height reduction for metal/n-InP by inserting ultra-thin atomic layer deposited high-k dielectrics. Appl Phys Lett, 2013, 103: 261602

    Article  Google Scholar 

  22. Lee S, Tang A, Aloni S, et al. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett, 2015, 16: 276–281

    Article  Google Scholar 

  23. Kaushik N, Karmakar D, Nipane A, et al. Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl Mater Interfaces, 2016, 8: 256–263

    Article  Google Scholar 

  24. Pak Y, Park W, Mitra S, et al. Enhanced performance of MoS2 photodetectors by inserting an ALD-processed TiO2 interlayer. Small, 2018, 14: 1703176

    Article  Google Scholar 

  25. Jang J, Kim Y, Chee S S, et al. Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS Appl Mater Interfaces, 2020, 12: 5031–5039

    Article  Google Scholar 

  26. Cheng J, He J, Pu C, et al. MoS2 transistors with low Schottky barrier contact by optimizing the interfacial layer thickness. Energies, 2022, 15: 6169

    Article  Google Scholar 

  27. Chen J Y, Liu L, Li C X, et al. Chemical vapor deposition growth of large-area monolayer MoS2 and fabrication of relevant back-gated transistor. Chin Phys Lett, 2019, 36: 037301

    Article  Google Scholar 

  28. Lauritsen J V, Kibsgaard J, Helveg S, et al. Size-dependent structure of MoS2 nanocrystals. Nat Nanotech, 2007, 2: 53–58

    Article  Google Scholar 

  29. Yang J J, Xing Y Q, Wu Z, et al. Ultrathin molybdenum disulfide (MoS2) film obtained in atomic layer deposition: A mini-review. Sci China Tech Sci, 2021, 64: 2347–2359

    Article  Google Scholar 

  30. Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv Funct Mater, 2012, 22: 1385–1390

    Article  Google Scholar 

  31. Yang X, Li Q, Hu G, et al. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Sci China Mater, 2016, 59: 182–190

    Article  Google Scholar 

  32. Fang M, Wang F, Han Y, et al. Controlled growth of bilayer-MoS2 films and MoS2-based field-effect transistor (FET) performance optimization. Adv Electron Mater, 2018, 4: 1700524

    Article  Google Scholar 

  33. Kim G S, Kim S H, Park J, et al. Schottky barrier height engineering for electrical contacts of multilayered MoS2 transistors with reduction of metal-induced gap states. ACS Nano, 2018, 12: 6292–6300

    Article  Google Scholar 

  34. Wang J, Yao Q, Huang C W, et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv Mater, 2016, 28: 8302–8308

    Article  Google Scholar 

  35. Chen J R, Odenthal P M, Swartz A G, et al. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett, 2013, 13: 3106–3110

    Article  Google Scholar 

  36. Cui X, Shih E M, Jauregui L A, et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett, 2017, 17: 4781–4786

    Article  Google Scholar 

  37. Kaushik N, Nipane A, Basheer F, et al. Schottky barrier heights for Au and Pd contacts to MoS2. Appl Phys Lett, 2014, 105: 113505

    Article  Google Scholar 

  38. Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett, 2014, 14: 1714–1720

    Article  Google Scholar 

  39. Kim H J, Yang S, Kim H, et al. Enhanced electrical and optical properties of single-layered MoS2 by incorporation of aluminum. Nano Res, 2018, 11: 731–740

    Article  Google Scholar 

  40. Prakash A, Cai Y, Zhang G, et al. Black phosphorus n-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small, 2017, 13: 1602909

    Article  Google Scholar 

  41. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150

    Article  Google Scholar 

  42. Kim S Y, Park S, Choi W. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation. Appl Phys Lett, 2016, 109: 152101

    Article  Google Scholar 

  43. Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature, 2018, 557: 696–700

    Article  Google Scholar 

  44. Tersoff J. Schottky barrier heights and the continuum of gap states. Phys Rev Lett, 1984, 52: 465–468

    Article  Google Scholar 

  45. Schulman D S, Arnold A J, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev, 2018, 47: 3037–3058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or KaiLiang Zhang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405600), the Natural Science Foundation of Tianjin City (Grant Nos. 18JCYBJC85700 and 18JCZDJC30500), the National Natural Science Foundation of China (Grant Nos. 62001326, 61274113, and 61404091), the Open Project of State Key Laboratory of Functional Materials for Information (Grant No. SKL202007), and the Science and Technology Planning Project of Tianjin City (Grant No. 20ZYQCGX00070).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Lin, X., Liu, Y. et al. Monolayer MoS2-based transistors with low contact resistance by inserting ultrathin Al2O3 interfacial layer. Sci. China Technol. Sci. 66, 1831–1840 (2023). https://doi.org/10.1007/s11431-022-2330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2330-3

Navigation