Skip to main content
Log in

Femtosecond laser-induced periodic surface structures on hard and brittle materials

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Hard and brittle materials have high hardness, excellent optical stability, chemical stability, and high thermal stability. Hence, they have huge application potential in various fields, such as optical components, substrate materials, and quantum information, especially under harsh conditions, such as high temperatures and high pressures. Femtosecond laser direct writing technology has greatly promoted the development of femtosecond laser-induced periodic surface structure (Fs-LIPSS or LIPSS by a femtosecond laser) applications of hard and brittle materials due to its high precision, controllability, and three-dimensional processing ability. Thus far, LIPSSs have been widely used in material surface treatment, optoelectronic devices, and micro-mechanics. However, a consensus has not been reached regarding the formation mechanism of LIPSSs on hard and brittle materials. In this paper, three widely accepted LIPSS formation mechanisms are introduced, and the characteristics and applications of LIPSSs on diamonds, silicon, silicon carbide, and fused silica surfaces in recent years are summarized. In addition, the application prospects and challenges of LIPSSs on hard and brittle materials by a femtosecond laser are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yong J, Chen F, Yang Q, et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Appl Mater Interfaces, 2013, 5: 9382–9385

    Article  Google Scholar 

  2. Yong J, Chen F, Yang Q, et al. Femtosecond laser weaving super-hydrophobic patterned PDMS surfaces with tunable adhesion. J Phys Chem C, 2013, 117: 24907–24912

    Article  Google Scholar 

  3. Liu H, Chen F, Wang X, et al. Photoetching of spherical microlenses on glasses using a femtosecond laser. Optics Commun, 2009, 282: 4119–4123

    Article  Google Scholar 

  4. Ma Z C, Zhang Y L, Han B, et al. Femtosecond-laser direct writing of metallic micro/nanostructures: From fabrication strategies to future applications. Small Methods, 2018, 2: 1700413

    Article  Google Scholar 

  5. Li Q K, Yu Y H, Wang L, et al. Sapphire-based fresnel zone plate fabricated by femtosecond laser direct writing and wet etching. IEEE Photon Technol Lett, 2016, 28: 1290–1293

    Article  Google Scholar 

  6. Yang R, Yu Y S, Chen C, et al. Rapid fabrication of microhole array structured optical fibers. Opt Lett, 2011, 36: 3879–3881

    Article  Google Scholar 

  7. Xie X, Li Y, Wang G, et al. Femtosecond laser processing technology for anti-reflection surfaces of hard materials. Micromachines, 2022, 13: 1084

    Article  Google Scholar 

  8. Li J P, Deng L Z, Zheng Y, et al. Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass. Front Phys, 2020, 15: 22603

    Article  Google Scholar 

  9. Ma Z C, Zhang Y L, Han B, et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun, 2020, 11: 4536

    Article  Google Scholar 

  10. Wang Y, Zhong L, Chen Z, et al. Photonic lattice-like waveguides in glass directly written by femtosecond laser for on-chip mode conversion. Chin Opt Lett, 2022, 20: 031406

    Article  Google Scholar 

  11. Huang X, Cheng H, Luo W, et al. Er-activated hybridized glass fiber for laser and sensor in the extended wavebands. Adv Opt Mater, 2021, 9: 2101394

    Article  Google Scholar 

  12. Hu Z Y, Sun Y L, Hua J G, et al. Femtosecond laser nano-fabrication with extended processing range. IEEE Photon Technol Lett, 2019, 31: 133–136

    Article  Google Scholar 

  13. Liu X Q, Chen Q D, Guan K M, et al. Dry-etching-assisted femtosecond laser machining. Laser Photon Rev, 2017, 11: 1600115

    Article  Google Scholar 

  14. Lv C, Sun X C, Xia H, et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing. Sens Actuat B-Chem, 2018, 259: 736–744

    Article  Google Scholar 

  15. Tian Z N, Cao X W, Yao W G, et al. Hybrid refractive-diffractive optical vortex microlens. IEEE Photon Technol Lett, 2016, 28: 2299–2302

    Article  Google Scholar 

  16. Wang L, Chen Q D, Yang R, et al. Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring. Appl Phys Lett, 2014, 104: 031904

    Article  Google Scholar 

  17. Zhang D, Liu R, Li Z. Irregular LIPSS produced on metals by single linearly polarized femtosecond laser. Int J Extrem Manuf, 2022, 4: 015102

    Article  Google Scholar 

  18. Li M T, Liu M, Sun H B. Surface nanostructuring via femtosecond lasers. Phys Chem Chem Phys, 2019, 21: 24262–24268

    Article  Google Scholar 

  19. Zhang D, Ranjan B, Tanaka T, et al. Multiscale hierarchical micro/nanostructures created by femtosecond laser ablation in liquids for polarization-dependent broadband antireflection. Nanomaterials, 2020, 10: 1573

    Article  Google Scholar 

  20. Zhang Y, Jiang Q, Cao K, et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photon Res, 2021, 9: 839

    Article  Google Scholar 

  21. Chen L, Cao K, Liu J, et al. Surface birefringence of regular periodic surface structures produced on glass coated with an indium tin oxide film using a low-fluence femtosecond laser through a cylindrical lens. Opt Express, 2020, 28: 30094–30106

    Article  Google Scholar 

  22. Wang L, Xu B B, Cao X W, et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica, 2017, 4: 637–642

    Article  Google Scholar 

  23. Zhang F, Xie X, Zhao X, et al. Polarization-dependent microstructural evolution induced by a femtosecond laser in an alumino-silicate glass. Opt Express, 2021, 29: 10265–10274

    Article  Google Scholar 

  24. Liu X Q, Yang S N, Yu L, et al. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv Funct Mater, 2019, 29: 1900037

    Article  Google Scholar 

  25. Liu X Q, Bai B F, Chen Q D, et al. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv, 2019, 2: 19002101–19002114

    Article  Google Scholar 

  26. Dostovalov A, Bronnikov K, Korolkov V, et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale, 2020, 12: 13431–13441

    Article  Google Scholar 

  27. Hua J G, Yu F, Tian Z N, et al. Characterization of refractive index change induced by femtosecond laser in lithium niobate. J Laser Micro Nanoen, 2018, 12: 207–211

    Google Scholar 

  28. Liu S F, Hou Z W, Lin L, et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science, 2022, 377: 1112–1116

    Article  Google Scholar 

  29. Li Z Z, Wang L, Fan H, et al. O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci Appl, 2020, 9: 41

    Article  Google Scholar 

  30. Yong J, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Appl Surf Sci, 2014, 288: 579–583

    Article  Google Scholar 

  31. Zhang D S, Chen F, Liu H W, et al. Research on the technology of femtosecond laser micromachining based on image edge tracing. Chin Sci Bull, 2010, 55: 877–881

    Article  Google Scholar 

  32. Hua J G, Tian Z N, Xu S J, et al. Fast fabrication of optical vortex generators by femtosecond laser ablation. Appl Surf Sci, 2019, 475: 660–665

    Article  Google Scholar 

  33. Pan J, Jia T, Jia X, et al. Infrared femtosecond laser-induced great enhancement of ultraviolet luminescence of ZnO two-dimensional nanostructures. Appl Phys A, 2014, 117: 1923–1932

    Article  Google Scholar 

  34. Tan D, Sharafudeen K N, Yue Y, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog Mater Sci, 2016, 76: 154–228

    Article  Google Scholar 

  35. Li Z Z, Wang L, Fan H, et al. Evolution of femtosecond laser-induced periodic structures: From nanoholes to regular structures. In: Proceeding of SPIE Micro+Nano MAaterials, Devices, and Applications Conference. Melbourne, 2019. 11201

  36. Zhang B, Liu X, Qiu J. Single femtosecond laser beam induced nanogratings in transparent media—Mechanisms and applications. J Materiomics, 2019, 5: 1–14

    Article  Google Scholar 

  37. Florian C, Kirner S V, Krüger J, et al. Surface functionalization by laser-induced periodic surface structures. J Laser Appl, 2020, 32: 022063

    Article  Google Scholar 

  38. Bonse J, Gräf S. Maxwell meets marangoni—A review of theories on laser-induced periodic surface structures. Laser Photonics Rev, 2020, 14: 2000215

    Article  Google Scholar 

  39. Sipe J E, Young J F, Preston J S, et al. Laser-induced periodic surface structure. I. Theory. Phys Rev B, 1983, 27: 1141–1154

    Article  Google Scholar 

  40. Young J F, Preston J S, van Driel H M et al. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys Rev B, 1983, 27: 1155–1172

    Article  Google Scholar 

  41. Li C, Stoian R, Cheng G H. Laser-induced periodic surface structures with ultrashort laser pulse (in Chinese). Chin Opt, 2018, 11: 2095–1531

    Google Scholar 

  42. Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys, 2009, 106: 104910

    Article  Google Scholar 

  43. Höhm S, Rosenfeld A, Krüger J, et al. Femtosecond laser-induced periodic surface structures on silica. J Appl Phys, 2012, 112: 014901

    Article  Google Scholar 

  44. Wang L, Chen Q D, Cao X W, et al. Plasmonic nano-printing: Large-area nanoscale energy deposition for efficient surface texturing. Light Sci Appl, 2017, 6: e17112

    Article  Google Scholar 

  45. Huang M, Zhao F, Cheng Y, et al. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano, 2009, 3: 4062–4070

    Article  Google Scholar 

  46. Han Y, Qu S. The ripples and nanoparticles on silicon irradiated by femtosecond laser. Chem Phys Lett, 2010, 495: 241–244

    Article  Google Scholar 

  47. Apostolova T, Obreshkov B D, Ionin A A, et al. Ultrafast photo-ionization and excitation of surface-plasmon-polaritons on diamond surfaces. Appl Surf Sci, 2018, 427: 334–343

    Article  Google Scholar 

  48. Schwarz S, Rung S, Esen C, et al. Surface plasmon polariton triggered generation of 1D-low spatial frequency LIPSS on fused silica. Appl Sci, 2018, 8: 1624

    Article  Google Scholar 

  49. Huang J, Xu K, Xu S, et al. Self-aligned laser-induced periodic surface structures for large-area controllable nanopatterning. Laser Photon Rev, 2022, 16: 2200093

    Article  Google Scholar 

  50. Reif J, Varlamova O, Costache F. Femtosecond laser induced nanostructure formation: Self-organization control parameters. Appl Phys A, 2008, 92: 1019–1024

    Article  Google Scholar 

  51. Dasbach M, Reinhardt H M, Hampp N A. Formation of highly ordered platinum nanowire arrays on silicon via laser-induced self-organization. Nanomaterials, 2019, 9: 1031

    Article  Google Scholar 

  52. Varlamova O, Reif J, Varlamov S, et al. The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results. Appl Surf Sci, 2011, 257: 5465–5469

    Article  Google Scholar 

  53. Torun G, Kishi T, Bellouard Y. Direct-write laser-induced self-organization and metallization beyond the focal volume in tellurite glass. Phys Rev Mater, 2021, 5: 055201

    Article  Google Scholar 

  54. Varlamova O, Bounhalli M, Reif J. Influence of irradiation dose on laser-induced surface nanostructures on silicon. Appl Surf Sci, 2013, 278: 62–66

    Article  Google Scholar 

  55. Cao X W, Chen Q D, Fan H, et al. Liquid-assisted femtosecond laser precision-machining of silica. Nanomaterials, 2018, 8: 287

    Article  Google Scholar 

  56. Hua J G, Liang S Y, Chen Q D, et al. Free-form micro-optics out of crystals: Femtosecond laser 3D sculpturing. Adv Funct Mater, 2022, 32: 2200255

    Article  Google Scholar 

  57. Zhang F T, Nie Z G, Huang H X, et al. Self-assembled three-dimensional periodic micro-nano structures in bulk quartz crystal induced by femtosecond laser pulses. Opt Express, 2019, 27: 6442–6450

    Article  Google Scholar 

  58. Forster M, Huber C, Armbruster O, et al. 50-nanometer femtosecond pulse laser induced periodic surface structures on nitrogen-doped diamond. Diamond Relat Mater, 2017, 74: 114–118

    Article  Google Scholar 

  59. Abdelmalek A, Sotillo B, Bedrane Z, et al. Origin of femtosecond laser induced periodic nanostructure on diamond. AIP Adv, 2017, 7: 105105

    Article  Google Scholar 

  60. Ozkan A M, Malshe A P, Railkar T A, et al. Femtosecond laser-induced periodic structure writing on diamond crystals and micro-clusters. Appl Phys Lett, 1999, 75: 3716–3718

    Article  Google Scholar 

  61. Granados E, Martinez-Calderon M, Gomez M, et al. Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Opt Express, 2017, 25: 15330–15335

    Article  Google Scholar 

  62. Wu Q H, Ma Y R, Fang R C, et al. Femtosecond laser-induced periodic surface structure on diamond film. Appl Phys Lett, 2003, 82: 1703–1705

    Article  Google Scholar 

  63. Rehman Z U, Janulewicz K A. Structural transformation of mono-crystalline diamond driven by ultrashort laser pulses. Diamond Relat Mater, 2017, 70: 194–200

    Article  Google Scholar 

  64. Calvani P, Bellucci A, Girolami M, et al. Optical properties of femtosecond laser-treated diamond. Appl Phys A, 2014, 117: 25–29

    Article  Google Scholar 

  65. Jiang T, Gao S, Tian Z, et al. Fabrication of diamond ultra-fine structures by femtosecond laser. Chin Opt Lett, 2020, 18: 101402

    Article  Google Scholar 

  66. Murphy R D, Torralva B, Adams D P, et al. Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate. Appl Phys Lett, 2013, 102: 211101

    Article  Google Scholar 

  67. Almeida G F B, Martins R J, Otuka A J G, et al. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses. Opt Express, 2015, 23: 27597–27605

    Article  Google Scholar 

  68. Shuleiko D, Martyshov M, Amasev D, et al. Fabricating femtosecond laser-induced periodic surface structures with electrophysical anisotropy on amorphous silicon. Nanomaterials, 2021, 11: 42

    Article  Google Scholar 

  69. Werner K, Chowdhury E. Extreme sub-wavelength structure formation from mid-IR femtosecond laser interaction with silicon. Nanomaterials, 2021, 11: 1192

    Article  Google Scholar 

  70. Chen L, Liu Z L, Guo C, et al. Nanosecond laser-induced controllable periodical surface structures on silicon. Chin Opt Lett, 2022, 20: 013802

    Article  Google Scholar 

  71. Ahsan M S, Lee M S, Hasan M K, et al. Formation mechanism of self-organized nano-ripples on quartz surface using femtosecond laser pulses. Optik, 2015, 126: 5979–5983

    Article  Google Scholar 

  72. Fang Z, Zhao Y A, Shao J D. Femtosecond laser-induced periodic surface structure on fused silica surface. Optik, 2016, 127: 1171–1175

    Article  Google Scholar 

  73. Schwarz S, Rung S, Hellmann R. Erratum: “Generation of laser-induced periodic surface structures on transparent material-fused silica” [Appl. Phys. Lett. 108, 181607 (2016)]. Appl Phys Lett, 2018, 113: 049901

    Article  Google Scholar 

  74. Xu S Z, Sun K, Yao C Z, et al. Periodic surface structures on dielectrics upon femtosecond laser pulses irradiation. Opt Express, 2019, 27: 8983–8993

    Article  Google Scholar 

  75. Xu S Z, Yao C Z, Dou H Q, et al. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum. Appl Surf Sci, 2017, 406: 91–98

    Article  Google Scholar 

  76. Gräf S, Kunz C, Müller F. Formation and properties of laser-induced periodic surface structures on different glasses. Materials, 2017, 10: 933

    Article  Google Scholar 

  77. Zhang R, Huang C Z, Wang J, et al. Evolution of micro/nano-structural arrays on crystalline silicon carbide by femtosecond laser ablation. Mater Sci Semicon Proc, 2020, 121: 105299

    Article  Google Scholar 

  78. Miyagawa R, Ohno Y, Deura M, et al. Characterization of femtosecond-laser-induced periodic structures on SiC substrates. Jpn J Appl Phys, 2018, 57: 025602

    Article  Google Scholar 

  79. Jiao L, Kong D, Zhang X, et al. Ripple period adjustment on SiC surface based on electron dynamics control and its polarization an-isotropy. Appl Phys A, 2021, 127: 22

    Article  Google Scholar 

  80. Ahn M, Cahyadi R, Wendorf J, et al. Low damage electrical modification of 4H-SiC via ultrafast laser irradiation. J Appl Phys, 2018, 123: 145106

    Article  Google Scholar 

  81. Song J, Tao W J, Song H, et al. Laser-induced periodic surface structures on 6H-SiC single crystals using temporally delayed femtosecond laser double-pulse trains. Appl Phys A, 2016, 122: 341

    Article  Google Scholar 

  82. Mastellone M, Bellucci A, Girolami M, et al. Enhanced selective solar absorption of surface nanotextured semi-insulating 6H-SiC. Optical Mater, 2020, 107: 109967

    Article  Google Scholar 

  83. Gao S, Li Z Z, Hu Z Y, et al. Diamond optical vortex generator processed by ultraviolet femtosecond laser. Opt Lett, 2020, 45: 2684–2687

    Article  Google Scholar 

  84. Gao S, Yin S Y, Liu Z X, et al. Narrow-linewidth diamond singlephoton sources prepared via femtosecond laser. Appl Phys Lett, 2022, 120: 023104

    Article  Google Scholar 

  85. Liu X Q, Zhang Y L, Li Q K, et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing. PhotoniX, 2022, 3: 1

    Article  Google Scholar 

  86. Hsu E M, Mailman N A, Botton G A, et al. Microscopic investigation of single-crystal diamond following ultrafast laser irradiation. Appl Phys A, 2011, 103: 185–192

    Article  Google Scholar 

  87. Wu M T, Guo B, Zhao Q L, et al. The influence of the ionization regime on femtosecond laser beam machining mono-crystalline diamond. Optics Laser Tech, 2018, 106: 34–39

    Article  Google Scholar 

  88. Martinez-Calderon M, Azkona J J, Casquero N, et al. Tailoring diamond’s optical properties via direct femtosecond laser nanostructuring. Sci Rep, 2018, 8: 14262

    Article  Google Scholar 

  89. Mastellone M, Bellucci A, Girolami M, et al. Deep-subwavelength 2D periodic surface nanostructures on diamond by double-pulse femtosecond laser irradiation. Nano Lett, 2021, 21: 4477–4483

    Article  Google Scholar 

  90. Granados E, Calderon M M, Krzywinski J, et al. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring. Opt Mater Express, 2017, 7: 3389–3396

    Article  Google Scholar 

  91. Sartori A F, Orlando S, Bellucci A, et al. Laser-induced periodic surface structures (LIPSS) on heavily boron-doped diamond for electrode applications. ACS Appl Mater Interfaces, 2019, 10: 43236–43251

    Article  Google Scholar 

  92. Aizawa T, Shiratori T, Kira Y, et al. Simultaneous nano-texturing onto a CVD-diamond coated piercing punch with femtosecond laser trimming. Appl Sci, 2020, 10: 2674

    Article  Google Scholar 

  93. Cui Y X, Guo P, Tian Y L, et al. Influence of femtosecond-laser-induced periodic surface structures on the tribological performance of CVD nano-crystalline diamond films. Surf Rev Lett, 2022, 29: 2250068

    Article  Google Scholar 

  94. Abdelmalek A, Giakoumaki A N, Bharadwaj V, et al. Morphological Study of nanostructures induced by direct femtosecond laser ablation on diamond. Micromachines, 2021, 12: 583

    Article  Google Scholar 

  95. Zhao J H, Li X B, Chen Q D, et al. Ultrafast laser-induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices. Mater Today Nano, 2020, 11: 100078

    Article  Google Scholar 

  96. Li C H, Zhao J H, Chen Q D, et al. Infrared absorption of femtosecond laser textured silicon under vacuum. IEEE Photon Technol Lett, 2015, 27: 1481–1484

    Article  Google Scholar 

  97. Wang L, Li Q, Wang H Y, et al. Ultrafast optical spectroscopy of surface-modified silicon quantum dots: Unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. Light Sci Appl, 2015, 4: e245

    Article  Google Scholar 

  98. Liu X Q, Yu L, Chen Q D, et al. Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing. Appl Phys Lett, 2017, 110: 091602

    Article  Google Scholar 

  99. Xia H, Wang J A, Tian Y, et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv Mater, 2010, 22: 3204–3207

    Article  Google Scholar 

  100. Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv, 2019, 2: 19000201–19000218

    Article  Google Scholar 

  101. Murphy R D, Torralva B, Adams D P, et al. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features. Appl Phys Lett, 2014, 104: 231117

    Article  Google Scholar 

  102. Guk I, Shandybina G, Yakovlev E. Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses. Appl Surf Sci, 2015, 353: 851–855

    Article  Google Scholar 

  103. Bonse J, Krüger J, Höhm S, et al. Femtosecond laser-induced periodic surface structures. J Laser Appl, 2012, 24: 042006

    Article  Google Scholar 

  104. Derrien T J Y, Itina T E, Torres R, et al. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J Appl Phys, 2013, 114: 083104

    Article  Google Scholar 

  105. Yang M, Wu Q, Chen Z D, et al. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse. Opt Lett, 2014, 39: 343–346

    Article  Google Scholar 

  106. Le Harzic R, Dörr D, Sauer D, et al. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt Lett, 2011, 36: 229–231

    Article  Google Scholar 

  107. Liu W, Hu J, Jiang L, et al. Formation of laser-induced periodic surface nanometric concentric ring structures on silicon surfaces through single-spot irradiation with orthogonally polarized femtosecond laser double-pulse sequences. Nanophotonics, 2021, 10: 1273–1283

    Article  Google Scholar 

  108. Borodaenko Y, Syubaev S, Khairullina E, et al. On-demand plasmon nanoparticle-embedded laser-induced periodic surface structures (LIPSSs) on silicon for optical nanosensing. Adv Opt Mater, 2022, 10: 2201094

    Article  Google Scholar 

  109. Borodaenko Y, Syubaev S, Gurbatov S, et al. Deep subwavelength laser-induced periodic surface structures on silicon as a novel multifunctional biosensing platform. ACS Appl Mater Interfaces, 2021, 13: 54551–54560

    Article  Google Scholar 

  110. Hamdorf A, Olson M, Lin C H, et al. Femtosecond and nanosecond laser fabricated substrate for surface-enhanced Raman scattering. Opt Lett, 2011, 36: 3353–3355

    Article  Google Scholar 

  111. Li Z H, Hu J, Jiang L, et al. Shaped femtosecond laser-regulated deposition sites of galvanic replacement for simple preparation of large-area controllable noble metal nanoparticles. Appl Surf Sci, 2022, 579: 152123

    Article  Google Scholar 

  112. Chen Y, Shan Y, Tu H T, et al. Quality improvement of laser-induced periodic ripple structures on silicon using a bismuth-indium alloy film. Appl Sci, 2021, 11: 632

    Article  Google Scholar 

  113. Geng J, Fang X G, Zhang L, et al. Controllable generation of large-scale highly regular gratings on Si films. Light Adv Manuf, 2021, 2: 273

    Article  Google Scholar 

  114. Geng J, Yan W, Shi L P, et al. Surface plasmons interference nanogratings: Wafer-scale laser direct structuring in seconds. Light Sci Appl, 2022, 11: 189

    Article  Google Scholar 

  115. Geng J, Shi L P, Sun X Y, et al. Artificial seeds-regulated femtosecond laser plasmonic nanopatterning. Laser Photon Rev, 2022, 16: 2200232

    Article  Google Scholar 

  116. Li Q S, Zhang Y J, Gong H Y, et al. Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics. Ceramics Int, 2015, 41: 13547–13552

    Article  Google Scholar 

  117. Yan Z X, Lin Q Y, Li G J, et al. A combined model for formation mechanism of ripples induced by femtosecond laser on silicon carbide. Appl Phys A, 2020, 126: 915

    Article  Google Scholar 

  118. Tomita T, Kinoshita K, Matsuo S. Surface structures of femtosecond laser irradiated 4H-SiC crystal. In: Proceedings of Pacific Rim Conference on Lasers and Electro-Optics. Tokyo, 2005. 1046–1047

  119. Tomita T, Kumai R, Kinoshita K, et al. Femtosecond laser-induced surface patterning on 4H-SiC. In: Proceedings of 12th International Conference on Silicon Carbide and Related Materials. Ostu, 2009. 600–603

  120. Zheng J, Huang J X, Xu S L. Multiscale micro-/nanostructures on single crystalline SiC fabricated by hybridly polarized femtosecond laser. Optics Lasers Eng, 2020, 127: 105940

    Article  Google Scholar 

  121. He W L, Yang J J. Probing ultrafast nonequilibrium dynamics in single-crystal SiC through surface nanostructures induced by femtosecond laser pulses. J Appl Phys, 2017, 121: 123108

    Article  Google Scholar 

  122. He W L, Yang J J, Guo C L. Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time-delayed femtosecond laser beams of different linear polarizations. Opt Express, 2017, 25: 5156–5168

    Article  Google Scholar 

  123. He W L, Zhao B, Yang J J, et al. Manipulation of subwavelength periodic structures formation on 4H-SiC surface with three temporally delayed femtosecond laser irradiations. Nanomaterials, 2022, 12: 796

    Article  Google Scholar 

  124. He Z Y, Xie X Z, Long J Y, et al. Large-area regular periodic surface structures on 4H-SiC induced by defocused femtosecond laser. Semicond Sci Technol, 2022, 37: 095005

    Article  Google Scholar 

  125. Shi X S, Xu X F. Laser fluence dependence of ripple formation on fused silica by femtosecond laser irradiation. Appl Phys A, 2019, 125: 256

    Article  Google Scholar 

  126. Tsibidis G D, Skoulas E, Papadopoulos A, et al. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers. Phys Rev B, 2016, 94: 081305

    Article  Google Scholar 

  127. Tsibidis G D, Fotakis C, Stratakis E. From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B, 2015, 92: 041405

    Article  Google Scholar 

  128. Gedvilas M, Raciukaitis G, Regelskis K. Self-organization in a chromium thin film under laser irradiation. Appl Phys A, 2008, 93: 203–208

    Article  Google Scholar 

  129. Regelskis K, Raciukaitis G, Gedvilas M. Ripple formation in the chromium thin film during laser ablation. Appl Surf Sci, 2007, 253: 6584–6587

    Article  Google Scholar 

  130. Gildenburg V B, Pavlichenko I A. Internal surface plasmon excitation as the root cause of laser-induced periodic plasma structure and self-organized nanograting formation in the volume of transparent dielectric. Nanomaterials, 2020, 10: 1461

    Article  Google Scholar 

  131. Chen C L, Cao C K, Li C Y, et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electron Adv, 2021, 4: 200036

    Article  Google Scholar 

  132. Xu S Z, Dou H Q, Sun K, et al. Scan speed and fluence effects in femtosecond laser induced micro/nano-structures on the surface of fused silica. J Non-Cryst Solids, 2018, 492: 56–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gong Wang, YunFei Li or Hui Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 62004059), the Natural Science Research Foundation of Hebei University of Technology (Grant No. BKYXX2203), the Natural Science Foundation of Hebei Province (Grant Nos. F2021202047 and F2021202002), the Funding Projects for the Introduction of Overseas Staff of Hebei Province (Grant No. C20210334), and the Key Laboratory Fund Project (Grant No. 2021JCJQLB055004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Wang, G., Li, Y. et al. Femtosecond laser-induced periodic surface structures on hard and brittle materials. Sci. China Technol. Sci. 67, 19–36 (2024). https://doi.org/10.1007/s11431-022-2327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2327-8

Keywords

Navigation