Skip to main content
Log in

High-efficiency resistive switch and artificial synaptic simulation in antimony-based perovskite devices

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Three kinds of Cs3Sb2X9 (X=I, Br, Cl) perovskite films have been prepared to fabricate the resistive memory devices with the structure of Al/Cs3Sb2X9 (X=I, Br, Cl)/indium tin oxide (ITO) glass. All devices exhibited a bipolar resistive switching behavior at room temperature by applying scanning voltage of 0 → 1 → 0→ −1.8 → 0 V. The switching voltages in the Al/Cs3Sb2X9 (X=I, Br, Cl)/ITO devices gradually decreased with the X from I, Br to Cl due to the different migration rates of halide vacancy in perovskite films, which is confirmed by the first-principles calculations of activation energy. The ON/OFF ratio under the reading voltage of 0.1 V significantly increased up to 100 in the Al/Cs3Sb2Cl9/ITO device, which is nearly 10 and 3 times larger than that of the Al/Cs3Sb2I9/ITO device and the Al/Cs3Sb2Br9/ITO device, respectively. The endurance cycles and retention time of current devices were evaluated, showing the excellent electrical stability. Importantly, the three kinds of Al/Cs3Sb2X9 (X=I, Br, Cl)/ITO device can successfully simulate the short-term plasticity of biological synapse. The Al/Cs3Sb2Cl9/ITO device showed the highest paired-pulsed facilitation index compared with that of other two devices, which was explored for the long-term plasticity and learning experience processes of synapse. In addition, the Al/Cs3Sb2Cl9/ITO device established associative learning behavior by simulating the Pavlov’s dog experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zidan M A, Strachan J P, Lu W D. The future of electronics based on memristive systems. Nat Electron, 2018, 1: 22–29

    Article  Google Scholar 

  2. Hwang B, Lee J S. Recent advances in memory devices with hybrid materials. Adv Electron Mater, 2019, 5: 1800519

    Article  Google Scholar 

  3. Kang K, Hu W, Tang X. Halide perovskites for resistive switching memory. J Phys Chem Lett, 2021, 12: 11673–11682

    Article  Google Scholar 

  4. Lanza M, Waser R, Ielmini D, et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano, 2021, 15: 17214–17231

    Article  Google Scholar 

  5. Xu W, Cho H, Kim Y H, et al. Organometal halide perovskite artificial synapses. Adv Mater, 2016, 28: 5916–5922

    Article  Google Scholar 

  6. Xiao Z, Huang J. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv Electron Mater, 2016, 2: 1600100

    Article  Google Scholar 

  7. Bisquert J, Guerrero A. Dynamic instability and time domain response of a model halide perovskite memristor for artificial neurons. J Phys Chem Lett, 2022, 13: 3789–3795

    Article  Google Scholar 

  8. Luo F, Ruan L, Tong J, et al. Enhanced resistive switching performance in yttrium-doped CH3NH3PbI3 perovskite devices. Phys Chem Chem Phys, 2021, 23: 21757–21768

    Article  Google Scholar 

  9. Kang K, Ahn H, Song Y, et al. High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv Mater, 2019, 31: 1804841

    Article  Google Scholar 

  10. Zheng Y, Luo F, Ruan L, et al. A facile fabrication of lead-free Cs2NaBiI6 double perovskite films for memory device application. J Alloys Compd, 2022, 909: 164613

    Article  Google Scholar 

  11. Ren Y, Ma H, Wang W, et al. Cycling-induced degradation of organic-inorganic perovskite-based resistive switching memory. Adv Mater Technol, 2019, 4: 1800238

    Article  Google Scholar 

  12. Kim S G, Van Le Q, Han J S, et al. Dual-phase all-inorganic cesium halide perovskites for conducting-bridge memory-based artificial synapses. Adv Funct Mater, 2019, 29: 1906686

    Article  Google Scholar 

  13. Liu Q, Gao S, Xu L, et al. Nanostructured perovskites for nonvolatile memory devices. Chem Soc Rev, 2022, 51: 3341–3379

    Article  Google Scholar 

  14. Sun Y, Tai M, Song C, et al. Competition between metallic and vacancy defect conductive filaments in a CH3NH3PbI3-based memory device. J Phys Chem C, 2018, 122: 6431–6436

    Article  Google Scholar 

  15. Zhu X, Lee J, Lu W D. Iodine vacancy redistribution in organic-inorganic halide perovskite films and resistive switching effects. Adv Mater, 2017, 29: 1700527

    Article  Google Scholar 

  16. Kim D J, Tak Y J, Kim W G, et al. Resistive switching properties through iodine migrations of a hybrid perovskite insulating layer. Adv Mater Interfaces, 2017, 4: 1601035

    Article  Google Scholar 

  17. Choi J, Park S, Lee J, et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv Mater, 2016, 28: 6562–6567

    Article  Google Scholar 

  18. Zhang J, Yang Y, Deng H, et al. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano, 2017, 11: 9294–9302

    Article  Google Scholar 

  19. Mao J Y, Zheng Z, Xiong Z Y, et al. Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy, 2020, 71: 104616

    Article  Google Scholar 

  20. Singh A, Chiu N C, Boopathi K M, et al. Lead-free antimony-based light-emitting diodes through the vapor-anion-exchange method. ACS Appl Mater Interfaces, 2019, 11: 35088–35094

    Article  Google Scholar 

  21. Ma Z, Shi Z, Yang D, et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett, 2020, 5: 385–394

    Article  Google Scholar 

  22. Yao M M, Jiang C H, Yao J S, et al. General synthesis of lead-free metal halide perovskite colloidal nanocrystals in 1-dodecanol. Inorg Chem, 2019, 58: 11807–11818

    Article  Google Scholar 

  23. Lu C, Itanze D S, Aragon A G, et al. Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity. Nanoscale, 2020, 12: 2987–2991

    Article  Google Scholar 

  24. Zheng Z, Hu Q, Zhou H, et al. Submillimeter and lead-free Cs3Sb2Br9 perovskite nanoflakes: Inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horiz, 2019, 4: 1372–1379

    Article  Google Scholar 

  25. Pradhan B, Kumar G S, Sain S, et al. Size tunable cesium antimony chloride perovskite nanowires and nanorods. Chem Mater, 2018, 30: 2135–2142

    Article  Google Scholar 

  26. Pradhan A, Sahoo S C, Sahu A K, et al. Effect of Bi substitution on Cs3Sb2Cl9: Structural phase transition and band gap engineering. Cryst Growth Des, 2020, 20: 3386–3395

    Article  Google Scholar 

  27. Wang X, Ali N, Bi G, et al. Lead-free antimony halide perovskite with heterovalent Mn2+ doping. Inorg Chem, 2020, 59: 15289–15294

    Article  Google Scholar 

  28. Saparov B, Hong F, Sun J P, et al. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem Mater, 2015, 27: 5622–5632

    Article  Google Scholar 

  29. Correa-Baena J P, Nienhaus L, Kurchin R C, et al. A-site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance. Chem Mater, 2018, 30: 3734–3742

    Article  Google Scholar 

  30. Umar F, Zhang J, Jin Z, et al. Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method. Adv Opt Mater, 2019, 7: 1801368

    Article  Google Scholar 

  31. Singh A, Boopathi K M, Mohapatra A, et al. Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl Mater Interfaces, 2018, 10: 2566–2573

    Article  Google Scholar 

  32. Singh A, Najman S, Mohapatra A, et al. Modulating performance and stability of inorganic lead-free perovskite solar cells via lewis-pair mediation. ACS Appl Mater Interfaces, 2020, 12: 32649–32657

    Article  Google Scholar 

  33. Paramanik S, Maiti A, Chatterjee S, et al. Large resistive switching and artificial synaptic behaviors in layered Cs3Sb2I9 Lead-free perovskite memory devices. Adv Elect Mater, 2022, 8: 2100237

    Article  Google Scholar 

  34. Kresse G. Ab initio molecular dynamics for liquid metals. J Non Cryst Solids, 1995, 192–193: 222–229

    Article  Google Scholar 

  35. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  Google Scholar 

  36. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  Google Scholar 

  37. Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  38. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  Google Scholar 

  39. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  Google Scholar 

  40. Perdew J P, Ruzsinszky A, Csonka G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett, 2008, 100: 136406

    Article  Google Scholar 

  41. Henkelman G, Jóhannesson G, Jónsson H. Methods for finding saddle points and minimum energy paths. In: Schwartz S D (ed). Theoretical Methods in Condensed Phase Chemistry. Progress in Theoretical Chemistry and Physics. Vol 5. Dordrecht: Springer, 2002. 269–302

    Chapter  Google Scholar 

  42. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  MathSciNet  Google Scholar 

  43. Chonamada T D, Dey A B, Santra P K. Degradation Studies of Cs3Sb2I9: A lead-free perovskite. ACS Appl Energy Mater, 2020, 3: 47–55

    Article  Google Scholar 

  44. Singh A, Lai P T, Mohapatra A, et al. Panchromatic heterojunction solar cells for Pb-free all-inorganic antimony based perovskite. Chem Eng J, 2021, 419: 129424

    Article  Google Scholar 

  45. Boopathi K M, Karuppuswamy P, Singh A, et al. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. J Mater Chem A, 2017, 5: 20843–20850

    Article  Google Scholar 

  46. Long N, Lin C, Chen F, et al. Nanocrystallization of lead-free Cs3Sb2Br9 perovskites in chalcogenide glass. J Am Ceram Soc, 2020, 103: 6106–6111

    Article  Google Scholar 

  47. Liu Y L, Yang C L, Wang M S, et al. Theoretical insight into the optoelectronic properties of lead-free perovskite derivatives of Cs3Sb2X9 (X = Cl, Br, I). J Mater Sci, 2019, 54: 4732–4741

    Article  Google Scholar 

  48. Timmermans C W M, Cholakh S O, Blasse G. The luminescence of Cs3Bi2Cl9 and Cs3Sb2Cl9. J Solid State Chem, 1983, 46: 222–233

    Article  Google Scholar 

  49. Geng T, Ma Z, Chen Y, et al. Bandgap engineering in two-dimensional halide perovskite Cs3Sb2I9 nanocrystals under pressure. Nanoscale, 2020, 12: 1425–1431

    Article  Google Scholar 

  50. Muthu C, Agarwal S, Vijayan A, et al. Hybrid perovskite nanoparticles for high-performance resistive random access memory devices: Control of operational parameters through chloride doping. Adv Mater Interfaces, 2016, 3: 1600092

    Article  Google Scholar 

  51. Hwang B, Gu C, Lee D, et al. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. Sci Rep, 2017, 7: 43794

    Article  Google Scholar 

  52. Meloni S, Moehl T, Tress W, et al. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat Commun, 2016, 7: 10334

    Article  Google Scholar 

  53. Haruyama J, Sodeyama K, Han L, et al. First-principles study of ion diffusion in perovskite solar cell sensitizers. J Am Chem Soc, 2015, 137: 10048–10051

    Article  Google Scholar 

  54. Yamada K, Sera H, Sawada S, et al. Reconstructive phase transformation and kinetics of Cs3Sb2I9 by means of rietveld analysis of X-ray diffraction and127I NQR. J Solid State Chem, 1997, 134: 319–325

    Article  Google Scholar 

  55. Paul S, Sain S, Kamilya T, et al. Shape tunable two-dimensional ligand-free cesium antimony chloride perovskites. Mater Today Chem, 2022, 23: 100641

    Article  Google Scholar 

  56. Lao J, Xu W, Jiang C, et al. Artificial synapse based on organic-inorganic hybrid perovskite with electric and optical modulation. Adv Electron Mater, 2021, 7: 2100291

    Article  Google Scholar 

  57. Lao J, Xu W, Jiang C, et al. An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing. J Mater Chem C, 2021, 9: 5706–5712

    Article  Google Scholar 

  58. Das U, Sarkar P, Paul B, et al. Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing. Appl Phys Lett, 2021, 118: 182103

    Article  Google Scholar 

  59. Kim S I, Lee Y, Park M H, et al. Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing. Adv Electron Mater, 2019, 5: 1900008

    Article  Google Scholar 

  60. Kim S J, Lee T H, Yang J M, et al. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater Today, 2022, 52: 19–30

    Article  Google Scholar 

  61. Mori M, Abegg M H, Gähwiler B H, et al. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature, 2004, 431: 453–456

    Article  Google Scholar 

  62. Park Y, Kim M K, Lee J S. 2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory. J Mater Chem C, 2021, 9: 1429–1436

    Article  Google Scholar 

  63. Hao D, Zhang J, Dai S, et al. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interfaces, 2020, 12: 39487–39495

    Article  Google Scholar 

  64. Hu S G, Liu Y, Chen T P, et al. Emulating the paired-pulse facilitation of a biological synapse with a NiOx-based memristor. Appl Phys Lett, 2013, 102: 183510

    Article  Google Scholar 

  65. Liu G, Wang C, Zhang W, et al. Organic biomimicking memristor for information storage and processing applications. Adv Electron Mater, 2016, 2: 1500298

    Article  Google Scholar 

  66. Wang W, Gao S, Li Y, et al. Artificial optoelectronic synapses based on TiNxO2−x/MoS2 heterojunction for neuromorphic computing and visual system. Adv Funct Mater, 2021, 31: 2101201

    Article  Google Scholar 

  67. Engert F, Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 1999, 399: 66–70

    Article  Google Scholar 

  68. Du C, Ma W, Chang T, et al. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv Funct Mater, 2015, 25: 4290–4299

    Article  Google Scholar 

  69. Huang W, Xia X, Zhu C, et al. Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett, 2021, 13: 85

    Article  Google Scholar 

  70. Kwak K J, Lee D E, Kim S J, et al. Halide perovskites for memristive data storage and artificial synapses. J Phys Chem Lett, 2021, 12: 8999–9010

    Article  Google Scholar 

  71. Li J, Ge C, Lu H, et al. Energy-efficient artificial synapses based on oxide tunnel junctions. ACS Appl Mater Interfaces, 2019, 11: 43473–43479

    Article  Google Scholar 

  72. Liu L, Cheng Z, Jiang B, et al. Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl Mater Interfaces, 2021, 13: 30797–30805

    Article  Google Scholar 

  73. Ohno T, Hasegawa T, Tsuruoka T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater, 2011, 10: 591–595

    Article  Google Scholar 

  74. Ku B, Koo B, Sokolov A S, et al. Two-terminal artificial synapse with hybrid organic-inorganic perovskite (CH3NH3)PbI3 and low operating power energy (∼47 fJ/µm2). J Alloys Compd, 2020, 833: 155064

    Article  Google Scholar 

  75. Liu J, Yang Z, Gong Z, et al. Weak light-stimulated synaptic hybrid phototransistors based on islandlike perovskite films prepared by spin coating. ACS Appl Mater Interfaces, 2021, 13: 13362–13371

    Article  Google Scholar 

  76. Subramanian Periyal S, Jagadeeswararao M, Ng S E, et al. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv Mater Technol, 2020, 5: 2000514

    Article  Google Scholar 

  77. Gong J, Wei H, Ni Y, et al. Methylammonium halide-doped perovskite artificial synapse for light-assisted environmental perception and learning. Mater Today Phys, 2021, 21: 100540

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianMin Zhang.

Additional information

Supporting information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51971057 and 52271238), the Liaoning Revitalization Talents Program (Grant No. XLYC2002075), and the Research Funds for the Central University (Grant Nos. N2202004 and N2102012).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Wu, Y., Tong, J. et al. High-efficiency resistive switch and artificial synaptic simulation in antimony-based perovskite devices. Sci. China Technol. Sci. 66, 1141–1151 (2023). https://doi.org/10.1007/s11431-022-2309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2309-1

Navigation