Skip to main content
Log in

Slat cove dynamics of multi-element airfoil at low Reynolds number

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The flow around the slat cove of a two-dimensional 30P30N multi-element airfoil is investigated with time-resolved particle image velocimetry (TR-PIV) at low Reynolds number (Rec = 2.41 × 104 and 4.61 × 104). The effects of angle of attack (α = 8°, 12°, and 16°) on the mean flow characteristics and vortex dynamics are discussed. The size of the recirculation within the slat cove and the intensity of the shed vortices originating from the slat cusp shear layer are found to generally decrease as the angle of attack increases. The joint time-frequency analyses show that disturbances of different frequencies exist in the slat cusp shear layer and they trigger the different vortex shedding patterns of the slat cusp shear layer. The self-sustained oscillation within the slat cove, normally observed at high Reynolds number (Rec ~ 106), is proved to be responsible for the disturbances of different frequencies and the related vortex dynamics in the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. van Dam C P. The aerodynamic design of multi-element high-lift systems for transport airplanes. Prog Aerospace Sci, 2002, 38: 101–144

    Article  Google Scholar 

  2. Ullah T, Javed A, Abdullah A, et al. Computational evaluation of an optimum leading-edge slat deflection angle for dynamic stall control in a novel urban-scale vertical axis wind turbine for low wind speed operation. Sustain Energy Technol Assess, 2020, 40: 100748

    Google Scholar 

  3. Wang H, Jiang X, Chao Y, et al. Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine. Energy, 2019, 182: 988–998

    Article  Google Scholar 

  4. Fu J, Shi Z, Zhou M, et al. Stall characteristics research of blended-wing-body aircraft (in Chinese). Acta Aeronauticaet Astronautica Sinica, 2020, 41: 123176

    Google Scholar 

  5. Traub L, Kaula M. Effect of leading-edge slats at low reynolds numbers. Aerospace, 2016, 3: 39

    Article  Google Scholar 

  6. Dobrzynski W. Almost 40 years of airframe noise research: What did we achieve? J Aircraft, 2010, 47: 353–367

    Article  Google Scholar 

  7. Wang J S, Wang J J. Wake-induced transition in the low-reynolds-number flow over a multi-element airfoil. J Fluid Mech, 2021, 915: A28

    Article  Google Scholar 

  8. Squire L C. Interactions between wakes and boundary-layers. Prog Aerosp Sci, 1989, 26: 261–288

    Article  Google Scholar 

  9. Pascioni K A, Cattafesta L N. Unsteady characteristics of a slat-cove flow field. Phys Rev Fluids, 2018, 3: 034607

    Article  Google Scholar 

  10. Wang J S, Wang J J. Vortex dynamics for flow around the slat cove at low reynolds numbers. J Fluid Mech, 2021, 919: A27

    Article  MATH  Google Scholar 

  11. Wang J, Wang J, Kim K C. Wake/shear layer interaction for low-reynolds-number flow over multi-element airfoil. Exp Fluids, 2019, 60: 16

    Article  Google Scholar 

  12. Wang J S, Feng L H, Wang J, et al. Görtler vortices in low-reynolds-number flow over multi-element airfoil. J Fluid Mech, 2018, 835: 898–935

    Article  Google Scholar 

  13. Souza D S, Rodríguez D, Himeno F H T, et al. Dynamics of the large-scale structures and associated noise emission in airfoil slats. J Fluid Mech, 2019, 875: 1004–1034

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang Y, Chen H, Wang K, et al. Aeroacoustic prediction of a multielement airfoil using wall-modeled large-eddy simulation. AIAA J, 2017, 55: 4219–4233

    Article  Google Scholar 

  15. Ashton N, West A, Mendonça F. Flow dynamics past a 30P30N three-element airfoil using improved delayed detached-eddy simulation. AIAA J, 2016, 54: 3657–3667

    Article  Google Scholar 

  16. Choudhari M, Lockard D P. Assessment of slat noise predictions for 30P30N high-lift configuration from banc-iii workshop. In: 21st AIAA/CEAS Aeroacoustics Conference. Dallas, 2015. 1–41

  17. Jenkins L N, Khorrami M R, Choudhari M. Characterization of unsteady flow structures near leading-edge slat: Part i. PIV measurements. In: 10th AIAA/CEAS Aeroacoustics Conference. Manchester, 2004. 1–15

  18. Terracol M, Manoha E. Wall-resolved large-eddy simulation of a three-element high-lift airfoil. AIAA J, 2020, 58: 517–536

    Article  Google Scholar 

  19. Terracol M, Manoha E, Lemoine B. Investigation of the unsteady flow and noise generation in a slat cove. AIAA J, 2015, 54: 469–489

    Article  Google Scholar 

  20. Deck S, Laraufie R. Numerical investigation of the flow dynamics past a three-element aerofoil. J Fluid Mech, 2013, 732: 401–444

    Article  MATH  Google Scholar 

  21. Li W, Guo Y, Liu W. On the mechanism of acoustic resonances from a leading-edge slat. Aerosp Sci Technol, 2021, 113: 106711

    Article  Google Scholar 

  22. Satti R, Li Y, Shock R, et al. Unsteady flow analysis of a multielement airfoil using lattice boltzmann method. AIAA J, 2012, 50: 1805–1816

    Article  Google Scholar 

  23. Choudhari M M, Khorrami M R. Effect of three-dimensional shear-layer structures on slat cove unsteadiness. AIAA J, 2007, 45: 2174–2186

    Article  Google Scholar 

  24. Khorrami M R, Berkman M E, Choudhari M. Unsteady flow computations of a slat with a blunt trailing edge. AIAA J, 2000, 38: 2050–2058

    Article  Google Scholar 

  25. Rossiter J. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports, 1964

  26. Pascioni K A, Cattafesta L N. An aeroacoustic study of a leading-edge slat: Beamforming and far field estimation using near field quantities. J Sound Vib, 2018, 429: 224–244

    Article  Google Scholar 

  27. Kamliya Jawahar H, Meloni S, Camussi R, et al. Intermittent and stochastic characteristics of slat tones. Phys Fluids, 2021, 33: 025120

    Article  Google Scholar 

  28. Kamliya Jawahar H, Alihan Showkat Ali S, Azarpeyvand M, et al. Aerodynamic and aeroacoustic performance of high-lift airfoil fitted with slat cove fillers. J Sound Vib, 2020, 479: 115347

    Article  Google Scholar 

  29. Li L, Liu P, Xing Y, et al. Time-frequency analysis of acoustic signals from a high-lift configuration with two wavelet functions. Appl Acoustics, 2018, 129: 155–160

    Article  Google Scholar 

  30. Kamliya Jawahar H, Theunissen R, Azarpeyvand M, et al. Flow characteristics of slat cove fillers. Aerosp Sci Technol, 2020, 100: 105789

    Article  Google Scholar 

  31. Amaral F R, Himeno F H T, Pagani Carlos do Carmo J, et al. Slat noise from an MD30P30N airfoil at extreme angles of attack. AIAA J, 2017, 56: 964–978

    Article  Google Scholar 

  32. Lu W, Liu P, Guo H, et al. Investigation on tones due to self-excited oscillation within leading-edge slat cove at different angles of attack: Frequency and intensity. Aerosp Sci Technol, 2019, 91: 59–69

    Article  Google Scholar 

  33. Pagani Jr C C, Souza D S, Medeiros M A F. Slat noise: Aeroacoustic beamforming in closed-section wind tunnel with numerical comparison. AIAA J, 2016, 54: 2100–2115

    Article  Google Scholar 

  34. Murayama M, Nakakita K, Yamamoto K, et al. Experimental study of slat noise from 30P30N three-element high-lift airfoil in jaxa hard-wall low-speed wind tunnel. In: 20th AIAA/CEAS Aeroacoustics Conference. Atlanta, 2014. 1–33

  35. Boutilier M S H, Yarusevych S. Effects of end plates and blockage on low-reynolds-number flows over airfoils. AIAA J, 2012, 50: 1547–1559

    Article  Google Scholar 

  36. Pan C, Xue D, Xu Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci China-Phys Mech Astron, 2015, 58: 104704

    Article  Google Scholar 

  37. Champagnat F, Plyer A, Le Besnerais G, et al. Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids, 2011, 50: 1169–1182

    Article  Google Scholar 

  38. Wang J S, Wu J, Wang J J. Wake-triggered secondary vortices over a cylinder/airfoil configuration. Exp Fluids, 2023, 64: 6

    Article  Google Scholar 

  39. Welch P. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust, 1967, 15: 70–73

    Article  Google Scholar 

  40. Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1999

    MATH  Google Scholar 

  41. Wang L, Feng L H. The interactions of rectangular synthetic jets with a laminar cross-flow. J Fluid Mech, 2020, 899: A32

    Article  Google Scholar 

  42. Haller G. Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D, 2001, 149: 248–277

    Article  MathSciNet  MATH  Google Scholar 

  43. Haller G, Yuan G. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 2000, 147: 352–370

    Article  MathSciNet  MATH  Google Scholar 

  44. He G S, Pan C, Feng L H, et al. Evolution of lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. J Fluid Mech, 2016, 792: 274–306

    Article  MathSciNet  MATH  Google Scholar 

  45. Shadden S C, Katija K, Rosenfeld M, et al. Transport and stirring induced by vortex formation. J Fluid Mech, 2007, 593: 315–331

    Article  MATH  Google Scholar 

  46. Huang L S, Ho C M. Small-scale transition in a plane mixing layer. J Fluid Mech, 1990, 210: 475–500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinJun Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102024 and 11721202) and the China Postdoctoral Science Foundation (Grant Nos. 2021M700010 and 2022T150036).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, Y. & Wang, J. Slat cove dynamics of multi-element airfoil at low Reynolds number. Sci. China Technol. Sci. 66, 1166–1179 (2023). https://doi.org/10.1007/s11431-022-2308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2308-7

Navigation