Skip to main content
Log in

Thermal modification of brittle CoFeNi2(Ti3Si5)0.16 eutectic high-entropy alloy by annealing treatment

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Adopting the idea of thermal modification of conventional Si-containing eutectic alloys, this study performed heating of the brittle CoFeNi2(Ti3Si5)0.16 eutectic high-entropy alloy under various annealing conditions to attempt the fragmentation and spheroidization of eutectic microstructure and improve fracture plasticity. Results reveal that the as-cast alloy exhibited fine eutectic microstructures with lamellar + network morphologies, consisting of face-centered cubic (FCC) and M16Ti6Si7-type silicide. After annealing at 1100°C × 120 h, the lamellar + network eutectic morphologies were effectively fragmented and spheroidized into granular + irregular morphologies. The resulting alloy featured excellent mechanical properties with an ultimate compressive strength (UCS) of 1980 ± 50 MPa, fracture plasticity of ∼16.6% ± 1%, and hardness of ∼448 ±15 HV. Compared with the as-cast specimen, the fracture plasticity of the specimen annealed for 120 h increased by 12.7 times, with no UCS reduction. With a further increase in the annealing time, the hard M16Ti6Si7-type silicide was seriously coarsened, deteriorating the alloy’s room-temperature mechanical properties but improving its high-temperature ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  Google Scholar 

  2. Wu S W, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Mater, 2019, 165: 444–458

    Article  Google Scholar 

  3. Yao N, Lu T, Feng K, et al. Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient and cryogenic temperatures. Acta Mater, 2022, 236: 118142

    Article  Google Scholar 

  4. Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563: 546–550

    Article  Google Scholar 

  5. Vaidya M, Sen S, Zhang X, et al. Phenomenon of ultra-fast tracer diffusion of Co in HCP high entropy alloys. Acta Mater, 2020, 196: 220–230

    Article  Google Scholar 

  6. Wang M, Ma Z L, Xu Z Q, et al. Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications. Scripta Mater, 2021, 191: 131–136

    Article  Google Scholar 

  7. Xie Y, Liang J, Zhang D, et al. Sustaining strength-ductility synergy of CoCrFeNiMn high entropy alloy by a multilevel heterogeneity associated with nanoparticles. Scripta Mater, 2020, 187: 390–394

    Article  Google Scholar 

  8. Joseph J, Haghdadi N, Annasamy M, et al. On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scripta Mater, 2020, 186: 230–235

    Article  Google Scholar 

  9. Li Y, Liao W B, Chen H, et al. A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength. Sci China Mater, 2023, 66: 780–792

    Article  Google Scholar 

  10. Chen L, Zhou Z, Tan Z, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys. J Alloys Compd, 2018, 764: 845–852

    Article  Google Scholar 

  11. Ren G, Huang L, Hu K, et al. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy. J Mater Sci Tech, 2022, 117: 158–166

    Article  Google Scholar 

  12. Deluigi O R, Pasianot R C, Valencia F J, et al. Simulations of primary damage in a high entropy alloy: Probing enhanced radiation resistance. Acta Mater, 2021, 213: 116951

    Article  Google Scholar 

  13. Li Z, Qi J, Li Z, et al. Effect of grain and phase boundaries on soft magnetic properties of FeCoNiAlSi high-entropy alloys. Mater Lett, 2021, 297: 129965

    Article  Google Scholar 

  14. Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun, 2019, 10: 489

    Article  Google Scholar 

  15. Wang M, Lu Y, Wang T, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures. Scripta Mater, 2021, 204: 114132

    Article  Google Scholar 

  16. Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci Rep, 2014, 4: 6200

    Article  Google Scholar 

  17. Jin X, Liang Y, Bi J, et al. Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing. Materialia, 2020, 10: 100639

    Article  Google Scholar 

  18. Jin X, Zhou Y, Zhang L, et al. A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties. Mater Lett, 2018, 216: 144–146

    Article  Google Scholar 

  19. Shuang S, Yu Q, Gao X, et al. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy. J Mater Sci Tech, 2022, 109: 197–208

    Article  Google Scholar 

  20. Jiang H, Han K M, Qiao D X, et al. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater Chem Phy, 2018, 210: 43–48. Doi: https://doi.org/10.1016/j.matchemphys.2017.05.056

    Article  Google Scholar 

  21. Huo W, Zhou H, Fang F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater Des, 2017, 134: 226–233

    Article  Google Scholar 

  22. Xu Z Q, Ma Z L, Xia G H, et al. Microstructures and mechanical properties of CoCrFeNiHfx high-entropy alloys. Mater Sci Eng-A, 2020, 792: 139820

    Article  Google Scholar 

  23. Tan Y, Li J, Wang J, et al. Microstructure characterization of CoCrFeNiMnPd eutectic high-entropy alloys. J Alloys Compd, 2018, 731: 600–611

    Article  Google Scholar 

  24. Yin Y, Zhang J, Tan Q, et al. Novel cost-effective Fe-based high entropy alloys with balanced strength and ductility. Mater Des, 2019, 162: 24–33

    Article  Google Scholar 

  25. Jiang H, Zhang H Z, Huang T D, et al. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high-entropy alloys. Mater Des, 2016, 109: 539–546

    Article  Google Scholar 

  26. Jain R, Rahul M R, Samal S, et al. Hot workability of Co-Fe-Mn-Ni-Ti eutectic high entropy alloy. J Alloys Compd, 2020, 822: 153609

    Article  Google Scholar 

  27. Lu Y, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys. Scripta Mater, 2020, 187: 202–209

    Article  Google Scholar 

  28. Chuang L C, Maeda K, Morito H, et al. In situ observation of solidification and subsequent evolution of Ni-Si eutectics. Scripta Mater, 2022, 211: 114513

    Article  Google Scholar 

  29. Lien H H, Wang J, Misra A. Plastic deformation induced microstructure transition in nano-fibrous Al-Si eutectics. Mater Des, 2022, 218: 110701

    Article  Google Scholar 

  30. Trepczyńska-Łent M, Boroński D, Maćkowiak P. Mechanical properties and microstructure of directionally solidified Fe-4.25%C eutectic alloy. Mater Sci Eng-A, 2021, 822: 141644

    Article  Google Scholar 

  31. Yang C, Liu F, Yang G, et al. Microstructure and phase selection in bulk undercooled Fe-B eutectic alloys. J Alloys Compd, 2007, 441: 101–106

    Article  Google Scholar 

  32. Kante S, Leineweber A. EBSD characterization of the eutectic microstructure in hypoeutectic Fe-C and Fe-C-Si alloys. Mater Charact, 2018, 138: 274–283

    Article  Google Scholar 

  33. Wu W, Gong M, Wei B, et al. Atomistic modeling of interface strengthening in Al-Si eutectic alloys. Acta Mater, 2022, 225: 117586

    Article  Google Scholar 

  34. Zhang L, Lu Y, Amar A, et al. Designing eutectic high-entropy alloys containing nonmetallic elements. Adv Eng Mater, 2022, 24: 2200486

    Article  Google Scholar 

  35. Zhang L, Lu Y, Amar A, et al. Eutectic high entropy alloys containing B and Si with excellent mechanical properties in annealing. Mater Sci Eng-A, 2022, 856: 143994

    Article  Google Scholar 

  36. Li X P, Wang X J, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater, 2015, 95: 74–82

    Article  Google Scholar 

  37. Wu H, Han Y F, Chen X C, et al. Effect of solution heat treatment on microstructure and fracture properties of Ti-Si eutectic alloy (in Chinese). Foundry, 2002, 5: 286–288

    Google Scholar 

  38. Guo Y, Jia L, Kong B, et al. Microstructure transition from lamellar eutectic to anomalous eutectic of Nb-Si based alloy powders by heat treatment and spark plasma sintering. J Alloys Compd, 2017, 696: 516–521

    Article  Google Scholar 

  39. Jiang H, Qiao D, Lu Y, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability. Scripta Mater, 2019, 165: 145–149

    Article  Google Scholar 

  40. Jiang L, Lu Y, Wu W, et al. Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions. J Mater Sci Tech, 2016, 32: 245–250

    Article  Google Scholar 

  41. Yin Y, Kent D, Tan Q, et al. Spheroidization behaviour of a Fe-enriched eutectic high-entropy alloy. J Mater Sci Tech, 2020, 51: 173–179

    Article  Google Scholar 

  42. He F, Wang Z, Shang X, et al. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater Des, 2016, 104: 259–264

    Article  Google Scholar 

  43. Li Y, Yang M, Li K, et al. In-situ study of effects of heat treatments and loading methods on fracture behaviors of a cast Al-Si alloy. Mater Today Commun, 2021, 28: 102680

    Article  Google Scholar 

  44. Ma G, Li R, Li R. Effects of stress concentration on low-temperature fracture behavior of A356 alloy. Mater Sci Eng-A, 2016, 667: 459–467

    Article  Google Scholar 

  45. Ji X, An Q, Xia Y, et al. Maximum shear stress-controlled uniaxial tensile deformation and fracture mechanisms and constitutive relations of Sn-Pb eutectic alloy at cryogenic temperatures. Mater Sci Eng-A, 2021, 819: 141523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiPing Lu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. U20A20278), the National Key Research and Development Program of China (Grant Nos. 2019YFA0209901 and 2018YFA0702901), Liao Ning Revitalization Talents Program (Grant No. XLYC1807047), and the Major Special Project of “Scientific and Technological Innovation 2025” in Ningbo (Grant No. 2019B10086).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, M., Huang, R. et al. Thermal modification of brittle CoFeNi2(Ti3Si5)0.16 eutectic high-entropy alloy by annealing treatment. Sci. China Technol. Sci. 66, 966–975 (2023). https://doi.org/10.1007/s11431-022-2300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2300-1

Navigation