Skip to main content
Log in

Multiphase flow physics of room temperature liquid metals and its applications

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Multiphase flow existing everywhere in the motion evolution of nature, industrial processes, and daily life, has been an interdisciplinary cutting-edge frontier covering rather diverse disciplines. Traditional multiphase flow of high melting metals typically involves gas/vapor-liquid two-phase fluidics which usually requests intense energy processes and therefore limits their applications to a large extent. From an alternative, the newly emerging room-temperature liquid metals (RTLMs) with fascinating metallic fluidic properties and multifunctional behaviors, not only well resolves the existing challenges facing conventional technologies, but also opens up a series of new scientific and engineering subjects. Especially, the conceptual introduction of multiphase composites endows liquid metal with many unconventional fluidic capabilities. To further push forward the advancement of this new area, the present article is dedicated to systematically outlining the scientific category of RTLMs multiphase flow physics and interpreting its fundamental and practical issues. The vision is to provide insights into promising developmental directions of RTLMs multiphase flow and thus facilitate synergetic research and progress among different disciplines. First, the traditional metal multiphase flow was briefly introduced. Then, we summarized the physics of RTLMs multiphase flow, the common types of liquid metals, the basic physical and chemical properties of their multiphase flow and governing equations, etc. Following that, various typical driving modalities and manipulation methods of RTLMs were illustrated. Finally, important implementations of RTLMs multiphase flow into thermal management, energy harvesting, catalysis, soft machines, biomedicine, and printed electronics were discussed. Overall, the multiphase flow physics of RTLMs is currently still in its incubation stage and there exist tremendous opportunities and challenges which are worth further pursuing in the coming time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X J. Thermophysics of Multiphase Flow (in Chinese). Xi’an: Xi’an Jiaotong University Press, 2005. 1–5

    Google Scholar 

  2. Guo L J. Dynamics of Two-phase and Multiphase Flow (in Chinese). Xi’an: Xi’an Jiaotong University Press, 2002. 1–17

    Google Scholar 

  3. Lin Z H, Guo L J, Chen T K, et al. Research on the Basic Theory and Technology of Multiphase Flow Thermophysics in Energy Power (in Chinese). Beijing: China Electric Power Press, 2010. 97–291

    Google Scholar 

  4. Zhang X D, Sun Y, Chen S, et al. Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied fields. Front Energy, 2018, 12: 276–296

    Article  Google Scholar 

  5. Shen X, Hibiki T. Distribution parameter and drift velocity for upward gas-liquid metal two-phase flow. Appl Thermal Eng, 2021, 184: 116242

    Article  Google Scholar 

  6. Tanatugu N, Fujii-E Y, Suita T. Electrical conductivity of liquid metal two-phase mixture in bubbly and slug flow regime. J Nucl Sci Tech, 1972, 9: 753–755

    Article  Google Scholar 

  7. Serizawa A, Michiyoshi I. Void fraction and pressure drop in liquid metal two-phase flow. J Nucl Sci Tech, 1973, 10: 435–445

    Article  Google Scholar 

  8. Fujii-E Y, Saito M, Inoue S, et al. Influence of void and velocity variations on two-phase liquid metal MHD induction converter characteristics. J Nucl Sci Tech, 1975, 12: 259–267

    Article  Google Scholar 

  9. Saito M, Inoue S, Fujii-E Y. Gas-liquid slip ratio and MHD pressure drop in two-phase liquid metal flow in strong magnetic field. J Nucl Sci Tech, 1978, 15: 476–489

    Article  Google Scholar 

  10. Yamazaki Y, Yamaguchi K. Void fraction correlation of two-phase flow of liquid metals in tubes. J Nucl Sci Tech, 1980, 17: 318–320

    Article  Google Scholar 

  11. Monji H, Morioka S. Boundary-layer loss in two-phase liquid-metal MHD channel flows. J Phys Soc Jpn, 1985, 54: 2866–2873

    Article  Google Scholar 

  12. Stapurewicz T, Themelis N J. Mixing and mass transfer phenomena in bottom-injected gas-liquid reactors. Canadian Metall Q, 1987, 26: 123–128

    Article  Google Scholar 

  13. Zhu M Y, Lou W T, Wang W L. Research progress of numerical simulation in steelmaking and continuous casting processes. Acta Metall Sin, 2018, 54: 131–150

    Google Scholar 

  14. Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies. Adv Mater, 2014, 26: 6036–6042

    Article  Google Scholar 

  15. Zhang Y, Jiang S, Hu Y, et al. Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett, 2022, 22: 2923–2933

    Article  Google Scholar 

  16. Zhang J, Yao Y, Sheng L, et al. Self-fueled biomimetic liquid metal mollusk. Adv Mater, 2015, 27: 2648–2655

    Article  Google Scholar 

  17. Mei S, Gao Y, Li H, et al. Thermally induced porous structures in printed gallium coating to make transparent conductive film. Appl Phys Lett, 2013, 102: 041905

    Article  Google Scholar 

  18. Ma K, Liu J. Liquid metal cooling in thermal management of computer chips. Front Energy Power Eng China, 2007, 1: 384–402

    Article  Google Scholar 

  19. Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Phys Lett A, 2007, 361: 252–256

    Article  Google Scholar 

  20. Yu C, Ji Y, Li Y, et al. A three-dimensional oscillating heat pipe filled with liquid metal and ammonia for high-power and high-heat-flux dissipation. Int J Heat Mass Transfer, 2022, 194: 123096

    Article  Google Scholar 

  21. Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater Interfaces, 2018, 5: 1800571

    Article  Google Scholar 

  22. Wang X, Lu C, Rao W. Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications. Appl Thermal Eng, 2021, 192: 116937

    Article  Google Scholar 

  23. Zhang X D, Liu J. Perspective on liquid metal enabled space science and technology. Sci China Tech Sci, 2020, 63: 1127–1140

    Article  Google Scholar 

  24. Qian J, Li X, Wu Z, et al. A comprehensive review on liquid-liquid two-phase flow in microchannel: Flow pattern and mass transfer. Microfluid Nanofluid, 2019, 23: 116

    Article  Google Scholar 

  25. Geng Y, Ling S D, Huang J, et al. Multiphase microfluidics: Fundamentals, fabrication, and functions. Small, 2020, 16: 1906357

    Article  Google Scholar 

  26. Sattari A, Hanafizadeh P, Hoorfar M. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Adv Colloid Interface Sci, 2020, 282: 102208

    Article  Google Scholar 

  27. Yang L, Ji W, Mao M, et al. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. J Cleaner Production, 2020, 257: 120408

    Article  Google Scholar 

  28. Li J, Zhang X, Xu B, et al. Nanofluid research and applications: A review. Int Commun Heat Mass Transfer, 2021, 127: 105543

    Article  Google Scholar 

  29. Tembhare S P, Barai D P, Bhanvase B A. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review. Renew Sustain Energy Rev, 2022, 153: 111738

    Article  Google Scholar 

  30. Anderson R, Zhang L, Ding Y, et al. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. J Power Sources, 2010, 195: 4531–4553

    Article  Google Scholar 

  31. Mortazavi M, Tajiri K. Two-phase flow pressure drop in flow channels of proton exchange membrane fuel cells: Review of experimental approaches. Renew Sustain Energy Rev, 2015, 45: 296–317

    Article  Google Scholar 

  32. Adler P M, Brenner H. Multiphase flow in porous media. Ann Rev Fluid Mech, 1988, 20: 35–59

    Article  Google Scholar 

  33. DiCarlo D A. Stability of gravity-driven multiphase flow in porous media: 40 years of advancements. Water Resour Res, 2013, 49: 4531–4544

    Article  Google Scholar 

  34. Zhang H, Lan H. A review of internal corrosion mechanism and experimental study for pipelines based on multiphase flow. Corrosion Rev, 2017, 35: 425–444

    Article  Google Scholar 

  35. Hansen L S, Pedersen S, Durdevic P. Multi-phase flow metering in offshore oil and gas transportation pipelines: Trends and perspectives. Sensors, 2019, 19: 2184

    Article  Google Scholar 

  36. Shi X, Tan C, Dong F, et al. Conductance sensors for multiphase flow measurement: A review. IEEE Sens J, 2021, 21: 12913–12925

    Article  Google Scholar 

  37. Tan C, Murai Y, Liu W, et al. Ultrasonic doppler technique for application to multiphase flows: A review. Int J Multiphase Flow, 2021, 144: 103811

    Article  MathSciNet  Google Scholar 

  38. Ni M J. Liquid metal hydrodynamics relevant to R&D of magneto-condined fusion reactor (in Chinese). Sci Sin-Phys Mech Astron, 2013, 43: 1570–1578

    Article  Google Scholar 

  39. Spano A, Belozerov A. Fusion reactor design problems (Report on the IAEA Workshop, Culham, UK, 29 Jan–15 Feb 1974). Nucl Fusion, 1974, 14: 281–283

    Article  Google Scholar 

  40. Takahashi M, Momozaki Y. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field. Fusion Eng Des, 2000, 51–52: 869–877

    Article  Google Scholar 

  41. Tanatsugu N, Inoue S, Fujii-E Y, et al. Influence or void and flow regime on liquid metal MHD induction generator using two-phase flow. J Nucl Sci Tech, 1974, 11: 378–386

    Article  Google Scholar 

  42. Saito M, Nagae H, Inoue S, et al. Redistribution of gaseous phase of liquid metal two-phase flow in a strong magnetic field. J Nucl Sci Tech, 1978, 15: 729–735

    Article  Google Scholar 

  43. Heineman J B, Marchaterre J F, Mehta S. Electromagnetic flow-meters for void fraction measurement in two-phase metal flow. Rev Sci Instr, 1963, 34: 399–401

    Article  Google Scholar 

  44. Cha J E, Ahn Y C, Seo K W, et al. An experimental study on the characteristics of electromagnetic flowmeters in the liquid metal two-phase flow. Flow Measure Instrum, 2003, 14: 201–209

    Article  Google Scholar 

  45. Michiyoshi I, Tanaka M, Takahashi O. Mercury-argon two-phase heat transfer in a vertical annulus under transverse magnetic field. Int J Heat Mass Transfer, 1982, 25: 1481–1487

    Article  Google Scholar 

  46. Barna I F, Imre A R, Rosta L, et al. Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source. Eur Phys J B, 2008, 66: 419–426

    Article  Google Scholar 

  47. Saksena R, Satyamurthy P, Munshi P. A comparison of experimental results and FLUENT simulations for void-fraction distribution in a two-phase system. Nucl Tech, 2008, 163: 426–434

    Article  Google Scholar 

  48. Haas T, Schubert C, Eickhoff M, et al. A review of bubble dynamics in liquid metals. Metals, 2021, 11: 664

    Article  Google Scholar 

  49. Zhang C, Eckert S, Gerbeth G. Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field. Int J Multiphase Flow, 2005, 31: 824–842

    Article  MATH  Google Scholar 

  50. Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45: 59–82

    Article  Google Scholar 

  51. Wang L T, Zhang Q Y, Li Z B, et al. Fundamental of inclusion removal from molten steel by rising bubble. J Iron Steel Res Int, 2004, 11: 5–9

    Google Scholar 

  52. Han F S, Wei J N, Cheng H F, et al. Effects of process parameters and alloy compositions on the pore structure of foamed aluminum. J Mater Process Tech, 2003, 138: 505–507

    Article  Google Scholar 

  53. Banhart J. Light-metal foams-history of innovation and technological challenges. Adv Eng Mater, 2013, 15: 82–111

    Article  Google Scholar 

  54. Upham D C, Agarwal V, Khechfe A, et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science, 2017, 358: 917–921

    Article  Google Scholar 

  55. Palmer C, Upham D C, Smart S, et al. Dry reforming of methane catalysed by molten metal alloys. Nat Catal, 2020, 3: 83–89

    Article  Google Scholar 

  56. Geißler T, Plevan M, Abánades A, et al. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Int J Hydrogen Energy, 2015, 40: 14134–14146

    Article  Google Scholar 

  57. Graff K. Macrosonics in industry: Ultrasonic soldering. Ultrasonics, 1977, 15: 75–81

    Article  Google Scholar 

  58. Blake J R, Keen G S, Tong R P, et al. Acoustic cavitation: The fluid dynamics of non-spherical bubbles. Philos Trans R Soc London Ser A-Math Phys Eng Sci, 1999, 357: 251–267

    Article  MathSciNet  MATH  Google Scholar 

  59. Kim J H, Jihye Lee J H, Yoo C D. Soldering method using longitudinal ultrasonic. IEEE Trans Comp Packag Technol, 2005, 28: 493–498

    Article  Google Scholar 

  60. Yu W, Zhang T, Wang Y, et al. Formation and elimination of burst phenomenon in ultrasonic-assisted resistance brazing. Trans Non-ferrous Met Soc China, 2019, 29: 485–494

    Article  Google Scholar 

  61. Smither R K. Liquid-metal cooling of synchrotron optics. In: Proceedings of the Conference on High Heat Flux Engineering, at the 1992 International Symposium on Optical Applied Science and Engineering. San Diego, 1992. 116–134

  62. Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants. Appl Phys Lett, 2004, 85: 506–508

    Article  Google Scholar 

  63. Morley N B, Burris J, Cadwallader L C, et al. GaInSn usage in the research laboratory. Rev Sci Instrum, 2008, 79: 056107

    Article  Google Scholar 

  64. Liu T, Sen P, Kim C J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. J Microelectromech Syst, 2012, 21: 443–450

    Article  Google Scholar 

  65. Ge H, Li H, Mei S, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renew Sustain Energy Rev, 2013, 21: 331–346

    Article  Google Scholar 

  66. Oshchapovskii V V. A new method of calculation of the melting temperatures of crystals of Group 1A metal halides and francium metal. Russ J Inorg Chem, 2014, 59: 561–567

    Article  Google Scholar 

  67. Yang X H, Liu J. Liquid metal enabled combinatorial heat transfer science: Toward unconventional extreme cooling. Front Energy, 2018, 12: 259–275

    Article  Google Scholar 

  68. Chen S, Wang H Z, Zhao R Q, et al. Liquid metal composites. Matter, 2020, 2: 1446–1480

    Article  Google Scholar 

  69. Handschuh-Wang S, Stadler F J, Zhou X. Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J Phys Chem C, 2021, 125: 20113–20142

    Article  Google Scholar 

  70. Plevachuk Y, Sklyarchuk V, Eckert S, et al. Thermophysical properties of the liquid Ga-In-Sn eutectic alloy. J Chem Eng Data, 2014, 59: 757–763

    Article  Google Scholar 

  71. Sun X, Wang X, Yuan B, et al. Liquid metal-enabled cybernetic electronics. Mater Today Phys, 2020, 14: 100245

    Article  Google Scholar 

  72. Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater, 2018, 20: 1700781

    Article  Google Scholar 

  73. Zuraiqi K, Zavabeti A, Allioux F M, et al. Liquid metals in catalysis for energy applications. Joule, 2020, 4: 2290–2321

    Article  Google Scholar 

  74. Tang J, Zhao X, Li J, et al. Liquid metal phagocytosis: Intermetallic wetting induced particle internalization. Adv Sci, 2017, 4: 1700024

    Article  Google Scholar 

  75. Kim D, Thissen P, Viner G, et al. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces, 2013, 5: 179–185

    Article  Google Scholar 

  76. Ding Y, Liu J. Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon. Front Energy, 2016, 10: 29–36

    Article  Google Scholar 

  77. Ding Y J. Study on flow and heat transfer characteristics of liquid metal hybrid fluids (in Chinese). Dissertation for the Doctoral Degree. Beijing: University of Chinese Academy of Sciences, 2019. 31–36

    Google Scholar 

  78. Tang J B. Investigation on the flow manipulation and motion actuation of gallium-based liquid metal (in Chinese). Dissertation for the Doctoral Degree. Beijing: University of Chinese Academy of Sciences, 2016. 5–7

    Google Scholar 

  79. Yang L X, Zhao X, Xu S, et al. Oxide transformation and break-up of liquid metal in boiling solutions. Sci China Tech Sci, 2020, 63: 289–296

    Article  Google Scholar 

  80. Zavabeti A, Ou J Z, Carey B J, et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 2017, 358: 332–335

    Article  Google Scholar 

  81. Jia M, Newberg J T. Liquid-gas interfacial chemistry of gallium-indium eutectic in the presence of oxygen and water vapor. J Phys Chem C, 2019, 123: 28688–28694

    Article  Google Scholar 

  82. Yi L, Ding Y, Yuan B, et al. Breathing to harvest energy as a mechanism towards making a liquid metal beating heart. RSC Adv, 2016, 6: 94692–94698

    Article  Google Scholar 

  83. Chen S, Yang X, Cui Y, et al. Self-growing and serpentine locomotion of liquid metal induced by copper ions. ACS Appl Mater Interfaces, 2018, 10: 22889–22895

    Article  Google Scholar 

  84. Hu L, Wang L, Ding Y, et al. Manipulation of liquid metals on a graphite surface. Adv Mater, 2016, 28: 9210–9217

    Article  Google Scholar 

  85. Fang X D. Advanced Two-Phase Flow and Heat Transfer (in Chinese). Beijing: Beihang University Press, 2021. 486

    Google Scholar 

  86. Hibiki T, Ishii M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int J Heat Mass Transfer, 2003, 46: 4935–4948

    Article  MATH  Google Scholar 

  87. Shang Z, Lou J, Li H. CFD of dilute gas-solid two-phase flow using Lagrangian algebraic slip mixture model. Powder Tech, 2014, 266: 120–128

    Article  Google Scholar 

  88. Suzzi D, Radl S, Khinast J. Validation of Euler-Euler and Euler-Lagrange approaches in the simulation of bubble columns. In: Proceedings of the 9th International Conference on Chemical and Process Engineering. Rome, 2009. 585–590

  89. Rieger R, Weiss C, Wigley G, et al. Investigating the process of liquid-liquid extraction by means of computational fluid dynamics. Comput Chem Eng, 1996, 20: 1467–1475

    Article  Google Scholar 

  90. Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems. J Heat Transfer, 1965, 87: 453–468

    Article  Google Scholar 

  91. Wörner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications. Microfluid Nanofluid, 2012, 12: 841–886

    Article  Google Scholar 

  92. Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39: 201–225

    Article  MATH  Google Scholar 

  93. De Schepper S C K, Heynderickx G J, Marin G B. CFD modeling of all gas-liquid and vapor-liquid flow regimes predicted by the Baker chart. Chem Eng J, 2008, 138: 349–357

    Article  Google Scholar 

  94. Katsumura Y, Hashizume H, Toda S. Numerical analysis of fluid flow with free surface and phase change under electromagnetic force. IEEE Trans Magn, 1996, 32: 1002–1005

    Article  Google Scholar 

  95. Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys, 1988, 79: 12–49

    Article  MathSciNet  MATH  Google Scholar 

  96. Losasso F, Fedkiw R, Osher S. Spatially adaptive techniques for level set methods and incompressible flow. Computers Fluids, 2006, 35: 995–1010

    Article  MathSciNet  MATH  Google Scholar 

  97. Balcázar N, Lehmkuhl O, Jofre L, et al. Level-set simulations of buoyancy-driven motion of single and multiple bubbles. Int J Heat Fluid Flow, 2015, 56: 91–107

    Article  Google Scholar 

  98. Jiang L, Chen S, Jiao X. Parametric shape and topology optimization: A new level set approach based on cardinal basis functions. Int J Numer Methods Eng, 2018, 114: 66–87

    Article  MathSciNet  Google Scholar 

  99. Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys, 2000, 162: 301–337

    Article  MathSciNet  MATH  Google Scholar 

  100. Sun D L, Tao W Q. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows. Int J Heat Mass Transfer, 2010, 53: 645–655

    Article  MATH  Google Scholar 

  101. Gao D, Morley N B, Dhir V. Understanding magnetic field gradient effect from a liquid metal droplet movement. J Fluids Eng, 2004, 126: 120–124

    Article  Google Scholar 

  102. Unverdi S O, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys, 1992, 100: 25–37

    Article  MATH  Google Scholar 

  103. Vu T, Nguyen C, Khanh D. Direct numerical study of a molten metal drop solidifying on a cold plate with different wettability. Metals, 2018, 8: 47

    Article  Google Scholar 

  104. Antanovskii L K. A phase field model of capillarity. Phys Fluids, 1995, 7: 747–753

    Article  MathSciNet  MATH  Google Scholar 

  105. Jackmin D. Three-dimensional computations of droplet collisions, coalescence, and droplet/wall interactions using a continuum surface-tension method. In: Proceedings of the 33rd Aerospace Sciences Meeting and Exhibit. Reno, 1995. AIAA-95-0883

  106. Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J Comput Phys, 1999, 155: 96–127

    Article  MathSciNet  MATH  Google Scholar 

  107. Warren J A. How does a metal freeze? A phase-field model of alloy solidification. IEEE Comput Sci Eng, 1995, 2: 38–49

    Article  Google Scholar 

  108. Yu Y, Wang Q, Yi L, et al. Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv Eng Mater, 2014, 16: 255–262

    Article  Google Scholar 

  109. Fang W Q, He Z Z, Liu J. Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett, 2014, 105: 134104

    Article  Google Scholar 

  110. Wang L, Liu J. Liquid metal folding patterns induced by electric capillary force. Appl Phys Lett, 2016, 108: 161602

    Article  Google Scholar 

  111. Tan S C, Yang X H, Gui H, et al. Galvanic corrosion couple-induced Marangoni flow of liquid metal. Soft Matter, 2017, 13: 2309–2314

    Article  Google Scholar 

  112. Chen S, Wang L, Zhang Q, et al. Liquid metal fractals induced by synergistic oxidation. Sci Bull, 2018, 63: 1513–1520

    Article  Google Scholar 

  113. Tang X, Tang S Y, Sivan V, et al. Photochemically induced motion of liquid metal marbles. Appl Phys Lett, 2013, 103: 174104

    Article  Google Scholar 

  114. Tian L, Gao M, Gui L. A microfluidic chip for liquid metal droplet generation and sorting. Micromachines, 2017, 8: 39

    Article  Google Scholar 

  115. Gol B, Kurdzinski M E, Tovar-Lopez F J, et al. Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system. Appl Phys Lett, 2016, 108: 164101

    Article  Google Scholar 

  116. Lee J, Kim C J. Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst, 2000, 9: 171–180

    Article  Google Scholar 

  117. Tang S Y, Sivan V, Khoshmanesh K, et al. Electrochemically induced actuation of liquid metal marbles. Nanoscale, 2013, 5: 5949–5957

    Article  Google Scholar 

  118. Sun Y, Xu S, Tan S, et al. Multiple electrohydrodynamic effects on the morphology and running behavior of tiny liquid metal motors. Micromachines, 2018, 9: 192

    Article  Google Scholar 

  119. Yang X H, Tan S C, Yuan B, et al. Alternating electric field actuated oscillating behavior of liquid metal and its application. Sci China Tech Sci, 2016, 59: 597–603

    Article  Google Scholar 

  120. Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep, 2014, 4: 7116

    Article  Google Scholar 

  121. Deng Y, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. J Electron Packag, 2010, 132: 031009

    Article  Google Scholar 

  122. Luo M, Zhou Y, Liu J. Blade heat dissipator with room-temperature liquid metal running inside a sheet of hollow chamber. IEEE Trans Compon Packag Manufact Technol, 2014, 4: 459–464

    Article  Google Scholar 

  123. Zhang X D, Zhou Y X, Liu J. A novel layered stack electromagnetic pump towards circulating metal fluid: Design, fabrication and test. Appl Thermal Eng, 2020, 179: 115610

    Article  Google Scholar 

  124. Wang L, Liu J. Electromagnetic rotation of a liquid metal sphere or pool within a solution. Proc R Soc A, 2015, 471: 20150177

    Article  Google Scholar 

  125. Li P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. J Electron Packaging, 2011, 133: 041009

    Article  Google Scholar 

  126. Tang J, Wang J, Liu J, et al. A volatile fluid assisted thermo-pneumatic liquid metal energy harvester. Appl Phys Lett, 2016, 108: 023903

    Article  Google Scholar 

  127. Yuan B, Tan S, Zhou Y, et al. Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Sci Bull, 2015, 60: 1203–1210

    Article  Google Scholar 

  128. Tan S C, Gui H, Yuan B, et al. Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Appl Phys Lett, 2015, 107: 071904

    Article  Google Scholar 

  129. Tang J, Zhao X, Zhou Y, et al. Triggering and tracing electro-hydrodynamic liquid-metal surface convection with a particle raft. Adv Mater Interfaces, 2017, 4: 1700939

    Article  Google Scholar 

  130. Hu L, Yuan B, Liu J. Liquid metal amoeba with spontaneous pseudopodia formation and motion capability. Sci Rep, 2017, 7: 7256

    Article  Google Scholar 

  131. Carle F, Bai K, Casara J, et al. Development of magnetic liquid metal suspensions for magnetohydrodynamics. Phys Rev Fluids, 2017, 2: 013301

    Article  Google Scholar 

  132. Jeon J, Lee J B, Chung S K, et al. On-demand magnetic manipulation of liquid metal in microfluidic channels for electrical switching applications. Lab Chip, 2017, 17: 128–133

    Article  Google Scholar 

  133. Tokuda Y, Sahoo D R, Moya J L B, et al. Programmable liquid matter: 2D shape drawing of liquid metals by dynamic electric field. In: Proceedings of the 12th ACM International Conference on Interactive Surfaces and Spaces (ACM ISS). Brighton, 2017. 454–457

  134. Hu L, Zhao X, Guo J, et al. Electrical control of liquid metal amoeba with directional extension formation. RSC Adv, 2019, 9: 2353–2359

    Article  Google Scholar 

  135. Zavabeti A, Daeneke T, Chrimes A F, et al. Ionic imbalance induced self-propulsion of liquid metals. Nat Commun, 2016, 7: 12402

    Article  Google Scholar 

  136. Zhao X, Liu J. Liquid metal vacuoles. Adv Mater Inter, 2022, 9: 2200583

    Article  Google Scholar 

  137. Li Z, Guo Y, Zong Y, et al. Ga based particles, alloys and composites: Fabrication and applications. Nanomaterials, 2021, 11: 2246

    Article  Google Scholar 

  138. Qi C, He Y, Hu Y, et al. Natural convection of Cu-Gallium nanofluid in enclosures. J Heat Transfer, 2011, 133: 122504

    Article  Google Scholar 

  139. Qi C, Wang G, Yang L, et al. Two-phase lattice Boltzmann simulation of the effects of base fluid and nanoparticle size on natural convection heat transfer of nanofluid. Int J Heat Mass Transfer, 2017, 105: 664–672

    Article  Google Scholar 

  140. Zhou X, Jiang Y, Li X, et al. Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing nano liquid-metal fluid. Int Commun Heat Mass Transfer, 2019, 106: 46–54

    Article  Google Scholar 

  141. Sasidharan A M, Venkatasubbaiah K. A comprehensive comparison in the heat transfer performance of pure water-based and liquid gallium-based hybrid nanofluid flows through a minichannel, using two-phase Eulerian-Eulerian model. Heat Transfer Eng, 2023, 44: 196–209

    Article  Google Scholar 

  142. Song S, Liao Q, Shen W, et al. Numerical study on laminar convective heat transfer enhancement of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid. Int J Heat Mass Transfer, 2013, 62: 286–294

    Article  Google Scholar 

  143. Zhou X, Li X, Cheng K, et al. Numerical study of heat transfer enhancement of nano liquid-metal fluid forced convection in circular tube. J Heat Transfer, 2018, 140: 081901

    Article  Google Scholar 

  144. Hu L, Wang H, Wang X, et al. Magnetic liquid metals manipulated in the three-dimensional free space. ACS Appl Mater Interfaces, 2019, 11: 8685–8692

    Article  Google Scholar 

  145. Zhang W, Ou J Z, Tang S Y, et al. Liquid metal/metal oxide frameworks. Adv Funct Mater, 2014, 24: 3799–3807

    Article  Google Scholar 

  146. Ren L, Zhuang J, Casillas G, et al. Nanodroplets for stretchable superconducting circuits. Adv Funct Mater, 2016, 26: 8111–8118

    Article  Google Scholar 

  147. Yu Y, Liu F, Zhang R, et al. Suspension 3D printing of liquid metal into self-healing hydrogel. Adv Mater Technol, 2017, 2: 1700173

    Article  Google Scholar 

  148. Kim D, Hwang J, Choi Y, et al. Effective delivery of anti-cancer drug molecules with shape transforming liquid metal particles. Cancers, 2019, 11: 1666

    Article  Google Scholar 

  149. Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B, 2016, 4: 5349–5357

    Article  Google Scholar 

  150. Cui W Y, Jiang Z, Hao T T, et al. Heat transfer performance of oscillating heat pipe with micro-nano droplets of liquid metal. Chem Eng Prog, 2022, 41: 95–103

    Google Scholar 

  151. Lu P, Zheng X, Fang L, et al. Numerical study of the gas-liquid two-phase flow in a self-designed mixer for a Ga-R113 MHD system. Energies, 2017, 10: 1629

    Article  Google Scholar 

  152. Deng Y, Liu J. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices. Heat Mass Transfer, 2010, 46: 1327–1334

    Article  Google Scholar 

  153. Tan S C, Zhou Y X, Wang L, et al. Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution. Sci China Tech Sci, 2016, 59: 301–308

    Article  Google Scholar 

  154. Zhu J Y, Tang S Y, Khoshmanesh K, et al. An integrated liquid cooling system based on Galinstan liquid metal droplets. ACS Appl Mater Interfaces, 2016, 8: 2173–2180

    Article  Google Scholar 

  155. Peng H, Guo W, Li M. Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube. Energy, 2020, 192: 116564

    Article  Google Scholar 

  156. Esrafilzadeh D, Zavabeti A, Jalili R, et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat Commun, 2019, 10: 865

    Article  Google Scholar 

  157. Tang J, Tang J, Mayyas M, et al. Liquid-metal-enabled mechanical-energy-induced CO2 conversion. Adv Mater, 2022, 34: 2105789

    Article  Google Scholar 

  158. Zavabeti A, Zhang B Y, de Castro I A, et al. Green synthesis of low-dimensional aluminum oxide hydroxide and oxide using liquid metal reaction media: Ultrahigh flux membranes. Adv Funct Mater, 2018, 28: 1804057

    Article  Google Scholar 

  159. Liu T Y, Li D D, Ye J, et al. An integrated soft jumping robotic module based on liquid metals. Adv Eng Mater, 2021, 23: 2100515

    Article  Google Scholar 

  160. Tang S Y, Khoshmanesh K, Sivan V, et al. Liquid metal enabled pump. Proc Natl Acad Sci USA, 2014, 111: 3304–3309

    Article  Google Scholar 

  161. Ren H, Jin H, Shu J, et al. Light-controlled versatile manipulation of liquid metal droplets: A gateway to future liquid robots. Mater Horiz, 2021, 8: 3063–3071

    Article  Google Scholar 

  162. Ye J, Chen J Y, Liu J. A liquid metal robot driven by hybrid-fluid. Sci Sin Tech, 2019, 49: 619–626

    Article  Google Scholar 

  163. Yao Y, Liu J. Liquid metal wheeled small vehicle for cargo delivery. RSC Adv, 2016, 6: 56482–56488

    Article  Google Scholar 

  164. Xue R, Guo W, Tao Y, et al. A tripodal wheeled mobile robot driven by a liquid metal motor. Lab Chip, 2022, 22: 1943–1950

    Article  Google Scholar 

  165. Gao W, Wang Y, Wang Q, et al. Liquid metal biomaterials for biomedical imaging. J Mater Chem B, 2022, 10: 829–842

    Article  Google Scholar 

  166. Sun X, Cui B, Yuan B, et al. Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor cryoablation and dual-mode imaging. Adv Funct Mater, 2020, 30: 2003359

    Article  Google Scholar 

  167. Wang D, Gao C, Wang W, et al. Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano, 2018, 12: 10212–10220

    Article  Google Scholar 

  168. Elbourne A, Cheeseman S, Atkin P, et al. Antibacterial liquid metals: Biofilm treatment via magnetic activation. ACS Nano, 2020, 14: 802–817

    Article  Google Scholar 

  169. Guo Z, Lu J, Wang D, et al. Galvanic replacement reaction for in situ fabrication of litchi-shaped heterogeneous liquid metal-Au nano-composite for radio-photothermal cancer therapy. Bioactive Mater, 2021, 6: 602–612

    Article  Google Scholar 

  170. Ren L, Sun S, Casillas-Garcia G, et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes. Adv Mater, 2018, 30: 1802595

    Article  Google Scholar 

  171. Sun X, Guo R, Yuan B, et al. Stiffness tunable implanted electrode enabled by magnetic liquid metal for wireless hyperthermia. Appl Mater Today, 2022, 27: 101495

    Article  Google Scholar 

  172. Zhang Q, Zheng Y, Liu J. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. Front Energy, 2012, 6: 311–340

    Article  Google Scholar 

  173. Chen S, Liu J. Liquid metal printed electronics towards ubiquitous electrical engineering. Jpn J Appl Phys, 2022, 61: SE0801

    Article  Google Scholar 

  174. Guo R, Sun X, Yuan B, et al. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv Sci, 2019, 6: 1901478

    Article  Google Scholar 

  175. Guo R, Wang X, Chang H, et al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. Adv Eng Mater, 2018, 20: 1800054

    Article  Google Scholar 

  176. Guo R, Sun X, Yao S, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol, 2019, 4: 1900183

    Article  Google Scholar 

  177. Zhang Q, Gao Y, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A, 2014, 116: 1091–1097

    Article  Google Scholar 

  178. Matsuki N, Ishikawa T, Ichiba S, et al. Oxygen supersaturated fluid using fine micro/nanobubbles. Int J Nanomed, 2014, 9: 4495

    Article  Google Scholar 

  179. Jing D, Li D, Pan Y, et al. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles. Langmuir, 2016, 32: 11123–11132

    Article  Google Scholar 

  180. Hewage S A, Kewalramani J, Meegoda J N. Stability of nanobubbles in different salts solutions. Colloids Surfs A-Physicochem Eng Aspects, 2021, 609: 125669

    Article  Google Scholar 

  181. Liang S T, Wang H Z, Liu J. Progress, mechanisms and applications of liquid-metal catalyst systems. Chem Eur J, 2018, 24: 17616–17626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51890890), and the Frontier Project of the Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, M., Xing, Z., Fu, J. et al. Multiphase flow physics of room temperature liquid metals and its applications. Sci. China Technol. Sci. 66, 1483–1510 (2023). https://doi.org/10.1007/s11431-022-2295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2295-4

Keywords

Navigation