Skip to main content
Log in

Liquid metal-based paper electronics: Materials, methods, and applications

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The liquid metals exhibit both the properties of liquids and metals and have a low melting point near room temperature. As a low-cost and easy-to-obtain flexible substrate, paper has significant advantages for large-area and multilayer flexible circuit fabrication. This has led to a growing interest in liquid metal-based paper electronics among both scientists and industry. In order to promote the development and application of liquid metal-based paper electronics, this review will summarize and analyze the progress from three perspectives, including liquid metal inks, printing methods, and their applications. A variety of liquid metal-based electronic inks are introduced, and their advantages and disadvantages are discussed. Then, a comparison of typical fabrication methods has been presented, including chemical interaction-based selective adhesion and surface roughness-based transfer printing. A number of emerging applications used and expected to be applied to liquid metal-based paper electronics have been demonstrated. Finally, paper electronics based on liquid metals are discussed along with their challenges and opportunities for the further development. In the future, further investigations and applications of paper electronics based on liquid metals are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wen G, Guo Z. A paper-making transformation: From cellulose-based superwetting paper to biomimetic multifunctional inorganic paper. J Mater Chem A, 2020, 8: 20238–20259

    Article  Google Scholar 

  2. Ma T, Zhao Y, Ruan K, et al. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces, 2020, 12: 1677–1686

    Article  Google Scholar 

  3. Dong X, Liu Q, Liu S, et al. Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Adv Fiber Mater, 2022, 4: 885–893

    Article  Google Scholar 

  4. Jung Y H, Chang T H, Zhang H, et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun, 2015, 6: 7170

    Article  Google Scholar 

  5. Xu X, Zhou J, Jiang L, et al. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale, 2016, 8: 12294–12306

    Article  Google Scholar 

  6. Bian J, Chen F, Yang B, et al. Laser-induced interfacial spallation for controllable and versatile delamination of flexible electronics. ACS Appl Mater Interfaces, 2020, 12: 54230–54240

    Article  Google Scholar 

  7. Lin C H, Tsai D S, Wei T C, et al. Highly deformable origami paper photodetector arrays. ACS Nano, 2017, 11: 10230–10235

    Article  Google Scholar 

  8. Sundriyal P, Bhattacharya S. Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors. ACS Appl Mater Interfaces, 2017, 9: 38507–38521

    Article  Google Scholar 

  9. Zhang Y, Li L, Zhang L, et al. In-situ synthesized polypyrrole-cellulose conductive networks for potential-tunable foldable power paper. Nano Energy, 2017, 31: 174–182

    Article  Google Scholar 

  10. Kamyshny A, Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev, 2019, 48: 1712–1740

    Article  Google Scholar 

  11. Chen Y, Zhou L, Wei J, et al. Direct ink writing of flexible electronics on paper substrate with graphene/polypyrrole/carbon black ink. J Elec Materi, 2019, 48: 3157–3168

    Article  Google Scholar 

  12. Russo A, Ahn B Y, Adams J J, et al. Pen-on-paper flexible electronics. Adv Mater, 2011, 23: 3426–3430

    Article  Google Scholar 

  13. Harper A F, Diemer P J, Jurchescu O D. Contact patterning by laser printing for flexible electronics on paper. npj Flex Electron, 2019, 3: 11

    Article  Google Scholar 

  14. Palavesam N, Marin S, Hemmetzberger D, et al. Roll-to-roll processing of film substrates for hybrid integrated flexible electronics. Flex Print Electron, 2018, 3: 014002

    Article  Google Scholar 

  15. Alrammouz R, Podlecki J, Vena A, et al. Highly porous and flexible capacitive humidity sensor based on self-assembled graphene oxide sheets on a paper substrate. Sens Actuat B-Chem, 2019, 298: 126892

    Article  Google Scholar 

  16. Zschieschang U, Klauk H. Organic transistors on paper: A brief review. J Mater Chem C, 2019, 7: 5522–5533

    Article  Google Scholar 

  17. He M, Zhang K, Chen G, et al. Ionic gel paper with long-term bendable electrical robustness for use in flexible electroluminescent devices. ACS Appl Mater Interfaces, 2017, 9: 16466–16473

    Article  Google Scholar 

  18. Liu Y, Shang S, Mo S, et al. Soft actuators built from cellulose paper: A review on actuation, material, fabrication, and applications. J Sci-Adv Mater Devices, 2021, 6: 321–337

    Article  Google Scholar 

  19. Luo S, Wang Y, Kong T C, et al. Flexible direct formate paper fuel cells with high performance and great durability. J Power Sources, 2021, 490: 229526

    Article  Google Scholar 

  20. Zhao X, Han W, Zhao C, et al. Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology. ACS Appl Mater Interfaces, 2019, 11: 10301–10309

    Article  Google Scholar 

  21. Chen Y, Zhou T, Li Y, et al. Robust fabrication of nonstick, non-corrosive, conductive graphene-coated liquid metal droplets for droplet-based, floating electrodes. Adv Funct Mater, 2018, 28: 1706277

    Article  Google Scholar 

  22. Jeon J, Lee J B, Chung S K, et al. Magnetic liquid metal marble: Characterization of lyophobicity and magnetic manipulation for switching applications. J Microelectromech Syst, 2016, 25: 1050–1057

    Article  Google Scholar 

  23. Liang S, Chen X, Li F, et al. Laser-engraved liquid metal circuit for wearable electronics. Bioengineering, 2022, 9: 59

    Article  Google Scholar 

  24. Liang S, Wang Z, Li F, et al. Study on the electric actuation of liquid metal column in confining system. Chin J Mech Eng, 2022, 35: 60

    Article  Google Scholar 

  25. Liang S, Li J, Li F, et al. Flexible tactile sensing microfibers based on liquid metals. ACS Omega, 2022, 7: 12891–12899

    Article  Google Scholar 

  26. Zhang J, Yao Y, Sheng L, et al. Self-fueled biomimetic liquid metal mollusk. Adv Mater, 2015, 27: 2648–2655

    Article  Google Scholar 

  27. Eaker C B, Dickey M D. Liquid metal actuation by electrical control of interfacial tension. Appl Phys Rev, 2016, 3: 031103

    Article  Google Scholar 

  28. Wang H, Yuan B, Liang S, et al. Plus-m: A porous liquid-metal enabled ubiquitous soft material. Mater Horiz, 2018, 5: 222–229

    Article  Google Scholar 

  29. Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater, 2018, 20: 1700781

    Article  Google Scholar 

  30. Kim J H, Kim S, So J H, et al. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl Mater Interfaces, 2018, 10: 17448–17454

    Article  Google Scholar 

  31. Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun, 2015, 6: 10066

    Article  Google Scholar 

  32. Yu Y, Miyako E. Manipulation of biomolecule-modified liquid-metal blobs. Angew Chem Int Ed, 2017, 56: 13606–13611

    Article  Google Scholar 

  33. Guo R, Liu J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. J Micromech Microeng, 2017, 27: 104002

    Article  Google Scholar 

  34. Choi D Y, Kim M H, Oh Y S, et al. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl Mater Interfaces, 2017, 9: 1770–1780

    Article  Google Scholar 

  35. Guo R, Wang X L, Yu W Z, et al. A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring. Sci China Tech Sci, 2018, 61: 1031–1037

    Article  Google Scholar 

  36. Guo R, Wang H, Duan M, et al. Stretchable electronics based on nano-Fe gain amalgams for smart flexible pneumatic actuator. Smart Mater Struct, 2018, 27: 085022

    Article  Google Scholar 

  37. He J, Liang S, Li F, et al. Recent development in liquid metal materials. ChemistryOpen, 2021, 10: 360–372

    Article  Google Scholar 

  38. Ren L, Xu X, Du Y, et al. Liquid metals and their hybrids as stimulus-responsive smart materials. Mater Today, 2020, 34: 92–114

    Article  Google Scholar 

  39. Tang S Y, Tabor C, Kalantar-Zadeh K, et al. Gallium liquid metal: The devil’s elixir. Annu Rev Mater Res, 2021, 51: 381–408

    Article  Google Scholar 

  40. Chen S, Liu J. Liquid metal printed electronics towards ubiquitous electrical engineering. Jpn J Appl Phys, 2022, 61: SE0801

    Article  Google Scholar 

  41. Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat Commun, 2015, 6: 7461

    Article  Google Scholar 

  42. Stoyanov H, Kollosche M, Risse S, et al. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv Mater, 2013, 25: 578–583

    Article  Google Scholar 

  43. Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater, 2009, 8: 494–499

    Article  Google Scholar 

  44. Liang B, Zhang Z, Chen W, et al. Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett, 2019, 11: 92

    Article  Google Scholar 

  45. Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater, 2012, 24: 5117–5122

    Article  Google Scholar 

  46. Guo R, Wang X, Chang H, et al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. Adv Eng Mater, 2018, 20: 1800054

    Article  Google Scholar 

  47. Guo R, Wang H, Sun X, et al. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces, 2019, 11: 30019–30027

    Article  Google Scholar 

  48. Doudrick K, Liu S, Mutunga E M, et al. Different shades of oxide: From nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir, 2014, 30: 6867–6877

    Article  Google Scholar 

  49. Lin Y, Cooper C, Wang M, et al. Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small, 2015, 11: 6397–6403

    Article  Google Scholar 

  50. Yuan B, Sun X, Wang H, et al. Liquid metal bubbles. Appl Mater Today, 2021, 24: 101151

    Article  Google Scholar 

  51. Joshipura I D, Ayers H R, Castillo G A, et al. Patterning and reversible actuation of liquid gallium alloys by preventing adhesion on rough surfaces. ACS Appl Mater Interfaces, 2018, 10: 44686–44695

    Article  Google Scholar 

  52. Martin A, Kiarie W, Chang B, et al. Chameleon metals: Autonomous nano-texturing and composition inversion on liquid metals surfaces. Angew Chem Int Ed, 2020, 59: 352–357

    Article  Google Scholar 

  53. Hou Y, Chang H, Song K, et al. Coloration of liquid-metal soft robots: From silver-white to iridescent. ACS Appl Mater Interfaces, 2018, 10: 41627–41636

    Article  Google Scholar 

  54. Hu L, Wang H, Wang X, et al. Magnetic liquid metals manipulated in the three-dimensional free space. ACS Appl Mater Interfaces, 2019, 11: 8685–8692

    Article  Google Scholar 

  55. Tang J, Zhao X, Li J, et al. Liquid metal phagocytosis: Intermetallic wetting induced particle internalization. Adv Sci, 2017, 4: 1700024

    Article  Google Scholar 

  56. Yuan B, Zhao C, Sun X, et al. Lightweight liquid metal entity. Adv Funct Mater, 2020, 30: 1910709

    Article  Google Scholar 

  57. Gao J, Ye J, Chen S, et al. Liquid metal foaming via decomposition agents. ACS Appl Mater Interfaces, 2021, 13: 17093–17103

    Article  Google Scholar 

  58. Gao J Y, Chen S, Liu T Y, et al. Additive manufacture of low melting point metal porous materials: Capabilities, potential applications and challenges. Mater Today, 2021, 49: 201–230

    Article  Google Scholar 

  59. Bartlett M D, Fassler A, Kazem N, et al. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv Mater, 2016, 28: 3726–3731

    Article  Google Scholar 

  60. Markvicka E J, Bartlett M D, Huang X, et al. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat Mater, 2018, 17: 618–624

    Article  Google Scholar 

  61. Tang L, Cheng S, Zhang L, et al. Printable metal-polymer conductors for highly stretchable bio-devices. iScience, 2018, 4: 302–311

    Article  Google Scholar 

  62. Park J E, Kang H S, Koo M, et al. Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv Mater, 2020, 32: 2002178

    Article  Google Scholar 

  63. Wang Y, Duan W, Zhou C, et al. Phoretic liquid metal micro/nanomotors as intelligent filler for targeted microwelding. Adv Mater, 2019, 31: 1905067

    Article  Google Scholar 

  64. Guo R, Wang H, Chen G, et al. Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding. Appl Mater Today, 2020, 20: 100738

    Article  Google Scholar 

  65. Guo R, Sun X, Yao S, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol, 2019, 4: 1900183

    Article  Google Scholar 

  66. Guo C, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. J Mater Chem B, 2014, 2: 5739–5745

    Article  Google Scholar 

  67. Sun X, Guo R, Yuan B, et al. Low-temperature triggered shape transformation of liquid metal microdroplets. ACS Appl Mater Interfaces, 2020, 12: 38386–38396

    Article  Google Scholar 

  68. Sun X, Cui B, Yuan B, et al. Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor cryoablation and dual-mode imaging. Adv Funct Mater, 2020, 30: 2003359

    Article  Google Scholar 

  69. Sun X, Yuan B, Sheng L, et al. Liquid metal enabled injectable biomedical technologies and applications. Appl Mater Today, 2020, 20: 100722

    Article  Google Scholar 

  70. Wang Q, Yu Y, Pan K, et al. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Trans Biomed Eng, 2014, 61: 2161–2166

    Article  Google Scholar 

  71. Jin C, Zhang J, Li X, et al. Injectable 3-d fabrication of medical electronics at the target biological tissues. Sci Rep, 2013, 3: 3442

    Article  Google Scholar 

  72. Yi L, Jin C, Wang L, et al. Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials, 2014, 35: 9789–9801

    Article  Google Scholar 

  73. Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv, 2013, 3: 112117

    Article  Google Scholar 

  74. Zheng Y, He Z Z, Yang J, et al. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep, 2014, 4: 4588

    Article  Google Scholar 

  75. Wang Q, Yu Y, Yang J, et al. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater, 2015, 27: 7109–7116

    Article  Google Scholar 

  76. Zheng Y, He Z, Gao Y, et al. Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep, 2013, 3: 1786

    Article  Google Scholar 

  77. Boley J W, White E L, Chiu G T C, et al. Direct writing of gallium-indium alloy for stretchable electronics. Adv Funct Mater, 2014, 24: 3501–3507

    Article  Google Scholar 

  78. Yun I, Lee Y, Park Y G, et al. Transferable transparent electrodes of liquid metals for bifacial perovskite solar cells and heaters. Nano Energy, 2022, 93: 106857

    Article  Google Scholar 

  79. Wang L, Liu J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Adv, 2015, 5: 57686–57691

    Article  Google Scholar 

  80. Sahlberg A, Nilsson F, Berglund A, et al. High-resolution liquid alloy patterning for small stretchable strain sensor arrays. Adv Mater Technol, 2018, 3: 1700330

    Article  Google Scholar 

  81. Zhang Q, Gao Y, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A, 2013, 116: 1091–1097

    Article  Google Scholar 

  82. Wang L, Liu J. Ink spraying based liquid metal printed electronics for directly making smart home appliances. ECS J Solid State Sci Technol, 2015, 4: P3057–P3062

    Article  Google Scholar 

  83. Zhang P, Wang Q, Guo R, et al. Self-assembled ultrathin film of CNC/PVA-liquid metal composite as a multifunctional janus material. Mater Horiz, 2019, 6: 1643–1653

    Article  Google Scholar 

  84. Hao X, Li N, Wang H, et al. Dialdehyde xylan-based sustainable, stable, and catalytic liquid metal nano-inks. Green Chem, 2021, 23: 7796–7804

    Article  Google Scholar 

  85. Lee G H, Lee Y R, Kim H, et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat Commun, 2022, 13: 2643

    Article  Google Scholar 

  86. Rahim M A, Centurion F, Han J, et al. Polyphenol-induced adhesive liquid metal inks for substrate-independent direct pen writing. Adv Funct Mater, 2021, 31: 2007336

    Article  Google Scholar 

  87. Tang L, Mou L, Zhang W, et al. Large-scale fabrication of highly elastic conductors on a broad range of surfaces. ACS Appl Mater Interfaces, 2019, 11: 7138–7147

    Article  Google Scholar 

  88. Tang J, Zhao X, Li J, et al. Gallium-based liquid metal amalgams: Transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces, 2017, 9: 35977–35987

    Article  Google Scholar 

  89. Chang H, Guo R, Sun Z, et al. Flexible conductive materials: Direct writing and repairable paper flexible electronics using nickel-liquid metal ink (Adv. Mater. Interfaces 20/2018). Adv Mater Interfaces, 2018, 5: 1870097

    Article  Google Scholar 

  90. Zhang M, Zhang P, Wang Q, et al. Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J Mater Chem C, 2019, 7: 10331–10337

    Article  Google Scholar 

  91. Ma B, Xu C, Chi J, et al. A versatile approach for direct patterning of liquid metal using magnetic field. Adv Funct Mater, 2019, 29: 1901370

    Article  Google Scholar 

  92. Wang X, Fan L, Zhang J, et al. Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv Funct Mater, 2019, 29: 1907063

    Article  Google Scholar 

  93. Wu P, Wang Z, Yao X, et al. Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater Horiz, 2021, 8: 2006–2017

    Article  Google Scholar 

  94. Handschuh-Wang S, Zhu L, Gan T, et al. Interfacing of surfaces with gallium-based liquid metals-approaches for mitigation and augmentation of liquid metal adhesion on surfaces. Appl Mater Today, 2020, 21: 100868

    Article  Google Scholar 

  95. Guo R, Tang J, Dong S, et al. One-step liquid metal transfer printing: Toward Fabrication of flexible electronics on wide range of substrates. Adv Mater Technol, 2018, 3: 1800265

    Article  Google Scholar 

  96. Hao X P, Li C Y, Zhang C W, et al. Self-shaping soft electronics based on patterned hydrogel with stencil-printed liquid metal. Adv Funct Mater, 2021, 31: 2105481

    Article  Google Scholar 

  97. Guo R, Zhen Y, Huang X, et al. Spatially selective adhesion enabled transfer printing of liquid metal for 3D electronic circuits. Appl Mater Today, 2021, 25: 101236

    Article  Google Scholar 

  98. Ma J L, Dong H X, He Z Z. Electrochemically enabled manipulation of gallium-based liquid metals within porous copper. Mater Horiz, 2018, 5: 675–682

    Article  Google Scholar 

  99. Jeong Y R, Kim J, Xie Z, et al. A skin-attachable, stretchable integrated system based on liquid gainsn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Mater, 2017, 9: e443

    Article  Google Scholar 

  100. Li G, Wu X, Lee D W. Selectively plated stretchable liquid metal wires for transparent electronics. Sens Actuat B-Chem, 2015, 221: 1114–1119

    Article  Google Scholar 

  101. Lopes P A, Paisana H, De Almeida A T, et al. Hydroprinted electronics: Ultrathin stretchable Ag−In−Ga e-skin for bioelectronics and human-machine interaction. ACS Appl Mater Interfaces, 2018, 10: 38760–38768

    Article  Google Scholar 

  102. Watson A M, Cook A B, Tabor C E. Electrowetting-assisted selective printing of liquid metal. Adv Eng Mater, 2019, 21: 1900397

    Article  Google Scholar 

  103. Kramer R K, Boley J W, Stone H A, et al. Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys. Langmuir, 2014, 30: 533–539

    Article  Google Scholar 

  104. Ding Y, Zeng M, Fu L. Surface chemistry of gallium-based liquid metals. Matter, 2020, 3: 1477–1506

    Article  Google Scholar 

  105. Zhang J, Zhang K, Yong J, et al. Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics. J Colloid Interface Sci, 2020, 578: 146–154

    Article  Google Scholar 

  106. Guo R, Yao S, Sun X, et al. Semi-liquid metal and adhesion-selection enabled rolling and transfer (smart) printing: A general method towards fast fabrication of flexible electronics. Sci China Mater, 2019, 62: 982–994

    Article  Google Scholar 

  107. Zhang S, Wang B, Jiang J, et al. High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics. ACS Appl Mater Interfaces, 2019, 11: 7148–7156

    Article  Google Scholar 

  108. Kim D, Lee D W, Choi W, et al. A super-lyophobic 3-d pdms channel as a novel microfluidic platform to manipulate oxidized galinstan. J Microelectromech Syst, 2013, 22: 1267–1275

    Article  Google Scholar 

  109. Chen S, Liu J. Pervasive liquid metal printed electronics: From concept incubation to industry. iScience, 2021, 24: 102026

    Article  Google Scholar 

  110. Wang L, Liu J. Advances in the development of liquid metal-based printed electronic inks. Front Mater, 2019, 6: 303

    Article  Google Scholar 

  111. Li H, Yang Y, Liu J. Printable tiny thermocouple by liquid metal gallium and its matching metal. Appl Phys Lett, 2012, 101: 073511

    Article  Google Scholar 

  112. Tavakoli M, Malakooti M H, Paisana H, et al. EGaIn-assisted room-temperature sintering of silver nanoparticles for stretchable, inkjet-printed, thin-film electronics. Adv Mater, 2018, 30: 1801852

    Article  Google Scholar 

  113. Guo R, Cui B, Zhao X, et al. Cu-EGaIn enabled stretchable e-skin for interactive electronics and CT assistant localization. Mater Horiz, 2020, 7: 1845–1853

    Article  Google Scholar 

  114. Li F, Qin Q, Zhou Y, et al. Recyclable liquid metal-based circuit on paper. Adv Mater Technol, 2018, 3: 1800131

    Article  Google Scholar 

  115. Teng L, Ye S, Handschuh-Wang S, et al. Liquid metal-based transient circuits for flexible and recyclable electronics. Adv Funct Mater, 2019, 29: 1808739

    Article  Google Scholar 

  116. Guo R, Sun X, Yuan B, et al. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv Sci, 2019, 6: 1901478

    Article  Google Scholar 

  117. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater, 2021, 20: 859–868

    Article  Google Scholar 

  118. Wang M, Ma C, Uzabakiriho P C, et al. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano, 2021, 15: 19364–19376

    Article  Google Scholar 

  119. Zhuang Q, Ma Z, Gao Y, et al. Liquid-metal-superlyophilic and conductivity-strain-enhancing scaffold for permeable superelastic conductors. Adv Funct Mater, 2021, 31: 2105587

    Article  Google Scholar 

  120. Zhao R, Guo R, Xu X, et al. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics. ACS Appl Mater Interfaces, 2020, 12: 36723–36730

    Article  Google Scholar 

  121. Li X, Zhu P, Zhang S, et al. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional e-skin. ACS Nano, 2022, 16: 5909–5919

    Article  Google Scholar 

  122. Liang S T, Liu J. Colorful liquid metal printed electronics. Sci China Tech Sci, 2017, 61: 110–116

    Article  Google Scholar 

  123. Yamamoto Y, Harada S, Yamamoto D, et al. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci Adv, 2016, 2: 1601473–e1601473

    Article  Google Scholar 

  124. Yun J, Lim Y, Lee H, et al. A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv Funct Mater, 2017, 27: 1700135

    Article  Google Scholar 

  125. Tang L, Shang J, Jiang X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci Adv, 2021, 7: eabe3778

    Article  Google Scholar 

  126. Guo R, Li T, Wu Z, et al. Thermal transfer-enabled rapid printing of liquid metal circuits on multiple substrates. ACS Appl Mater Interfaces, 2022, 14: 37028–37038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Guo.

Additional information

This work was supported by the Key Research and Development Program of Zhejiang Province (Grant No. 2022C04004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Guo, R. Liquid metal-based paper electronics: Materials, methods, and applications. Sci. China Technol. Sci. 66, 1595–1616 (2023). https://doi.org/10.1007/s11431-022-2262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2262-0

Keywords

Navigation