Skip to main content
Log in

Hot-exciton effects on exciton diffusion and circular polarization dynamics in a single PbI2 nanoflake

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

As one of the emerging two-dimensional lead halide materials, lead iodide (PbI2) nanosheets have proven to possess strong application potential in the fields of high-energy radiation detection and highly efficient perovskite solar cells. However, the underlying photophysical properties such as hot-exciton-related carrier dynamics remain unclear for PbI2 nanosheets. Here, we report the exciton dynamics of a single PbI2 nanoflake prepared by an aqueous solution method. Through a three-dimensional (3D) diffusion model, we obtain the exciton annihilation radius and diffusion coefficient of a single PbI2 nanoflake under non-resonant and resonant excitation conditions of band-edge exciton state. As initial exciton densities increase, we find the carrier recombination mechanism for a single PbI2 nanoflake gradually changes from exciton-exciton annihilation to free-carrier recombination. Finally, we reveal the room-temperature circular polarization of a single PbI2 nanoflake is due to free-carrier recombination with a band-edge exciton dissociation time of ~120 fs under the resonant excitation condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plekhanov V G. Lead halides: Electronic properties and applications. Prog Mater Sci, 2004, 49: 787–886

    Article  Google Scholar 

  2. Lin D Y, Guo B C, Dai Z Y, et al. PbI2 single crystal growth and its optical property study. Crystals, 2019, 9: 589

    Article  Google Scholar 

  3. Zhu X H, Wei Z R, Jin Y R, et al. Growth and characterization of a PbI2 single crystal used for gamma ray detectors. Cryst Res Technol, 2007, 42: 456–459

    Article  Google Scholar 

  4. Sun H, Liu Y, Gao X, et al. Bendable 3D-structure X-ray photo-detectors based on pure PbI2 single crystal. Semicond Sci Technol, 2021, 36: 035022

    Google Scholar 

  5. Hassan M, Matuchova M, Zdansky K. Performance of lead iodide nuclear radiation detectors with the introduction of rare earth elements. Open Phys, 2006, 4: 117–123

    Article  Google Scholar 

  6. Fang H H, Yang J, Adjokatse S, et al. Band-edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites. Adv Funct Mater, 2020, 30: 1907979

    Article  Google Scholar 

  7. Kahmann S, Duim H, Fang H H, et al. Photophysics of two-dimensional perovskites: Learning from metal halide substitution. Adv Funct Mater, 2021, 31: 2103778

    Article  Google Scholar 

  8. Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nat Commun, 2019, 10: 1066

    Article  Google Scholar 

  9. Li H, He Y, Li W, et al. Perovskite dimensional evolution through cations engineering to tailor the detection limit in hard X-ray response. Small, 2022, 18: 2203884

    Article  Google Scholar 

  10. Zheng W, Zhang Z, Lin R, et al. High-crystalline 2D layered PbI2 with ultrasmooth surface: Liquid-phase synthesis and application of high-speed photon detection. Adv Electron Mater, 2016, 2: 1600291

    Article  Google Scholar 

  11. Tan M, Hu C, Lan Y, et al. 2D lead dihalides for high-performance ultraviolet photodetectors and their detection mechanism investigation. Small, 2017, 13: 1702024

    Article  Google Scholar 

  12. Beckmann P A. A review of polytypism in lead iodide. Cryst Res Technol, 2010, 45: 455–460

    Article  Google Scholar 

  13. Matsui T, Yamamoto T, Nishihara T, et al. Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85°C/85% 1000 h stability. Adv Mater, 2019, 31: 1806823

    Article  Google Scholar 

  14. Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237

    Article  Google Scholar 

  15. Jung M, Shin T J, Seo J, et al. Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energy Environ Sci, 2018, 11: 2188–2197

    Article  Google Scholar 

  16. Wu C G, Chiang C H, Tseng Z L, et al. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ Sci, 2015, 8: 2725–2733

    Article  Google Scholar 

  17. Roldán-Carmona C, Gratia P, Zimmermann I, et al. High efficiency methylammonium lead triiodide perovskite solar cells: The relevance of non-stoichiometric precursors. Energy Environ Sci, 2015, 8: 3550–3556

    Article  Google Scholar 

  18. Barrit D, Sheikh A D, Munir R, et al. Hybrid perovskite solar cells: In situ investigation of solution-processed PbI2 reveals metastable precursors and a pathway to producing porous thin films. J Mater Res, 2017, 32: 1899–1907

    Article  Google Scholar 

  19. Tong G, Son D Y, Ono L K, et al. Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000 h. Nano Energy, 2021, 87: 106152

    Article  Google Scholar 

  20. Zhang Z Y, Chen X, Wang H Y, et al. Elucidating the band structure and free charge carrier dynamics of pure and impurities doped CH3NH3PbI3−xClx perovskite thin films. Phys Chem Chem Phys, 2015, 17: 30084–30089

    Article  Google Scholar 

  21. Park B, Kedem N, Kulbak M, et al. Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat Commun, 2018, 9: 3301

    Article  Google Scholar 

  22. Zheng W, Zheng B, Jiang Y, et al. Probing and manipulating carrier interlayer diffusion in van der Waals multilayer by constructing type-I heterostructure. Nano Lett, 2019, 19: 7217–7225

    Article  Google Scholar 

  23. Zhang D, Liu Y, He M, et al. Room temperature near unity spin polarization in 2D van der Waals heterostructures. Nat Commun, 2020, 11: 4442

    Article  Google Scholar 

  24. Liu X, Ha S T, Zhang Q, et al. Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals. ACS Nano, 2015, 9: 687–695

    Article  Google Scholar 

  25. Wang L, Wu C F, Wang H Y, et al. Internal structure-mediated ultrafast energy transfer in self-assembled polymer-blend dots. Nanoscale, 2013, 5: 7265–7270

    Article  Google Scholar 

  26. Sun Y, Zhou Z, Huang Z, et al. Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. Adv Mater, 2019, 31: 1806562

    Article  Google Scholar 

  27. Wang R, Li S, Wang P, et al. PbI2 nanosheets for photodetectors via the facile cooling thermal supersaturation solution method. J Phys Chem C, 2019, 123: 9609–9616

    Article  Google Scholar 

  28. Zhao L Y, Wang H, Wang H Y, et al. Ultrafast modulation of valley dynamics in multiple WS2-Ag gratings strong coupling system. PhotoniX, 2022, 3: 5

    Article  Google Scholar 

  29. Yue Y Y, Wang H Y, Wang L, et al. Direct observation of room-temperature intravalley coherent coupling processes in monolayer MoS2. Laser Photonics Rev, 2021, 16: 2100343

    Article  Google Scholar 

  30. Zheng S W, Wang L, Wang H Y, et al. Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy. Nanoscale, 2021, 13: 17093–17100

    Article  Google Scholar 

  31. Wang L, Wang Z, Wang H Y, et al. Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nat Commun, 2017, 8: 13906

    Article  Google Scholar 

  32. Wang L, Li Q, Wang H Y, et al. Ultrafast optical spectroscopy of surface-modified silicon quantum dots: Unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. Light Sci Appl, 2015, 4: e245

    Article  Google Scholar 

  33. Qi P, Luo Y, Shi B, et al. Phonon scattering and exciton localization: Molding exciton flux in two dimensional disorder energy landscape. eLight, 2021, 1: 6

    Article  Google Scholar 

  34. Shen C, Wang G. Excitonic effects on layer- and strain-dependent optoelectronic properties of PbI2. Appl Surf Sci, 2019, 470: 143–149

    Article  Google Scholar 

  35. Sim S, Park J, Song J G, et al. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics. Phys Rev B, 2013, 88: 075434

    Article  Google Scholar 

  36. Zhao W, Su R, Huang Y, et al. Transient circular dichroism and exciton spin dynamics in all-inorganic halide perovskites. Nat Commun, 2020, 11: 5665

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62175088, 61927814, 21773087, 21603083 & 21903035) and China Postdoctoral Science Foundation (Grant No. 2016M590259).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, L., Cui, L. et al. Hot-exciton effects on exciton diffusion and circular polarization dynamics in a single PbI2 nanoflake. Sci. China Technol. Sci. 67, 83–90 (2024). https://doi.org/10.1007/s11431-022-2249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2249-1

Keywords

Navigation