Skip to main content
Log in

Electrohydrodynamic lithography of metallic mesh for optically transparent flexible and conformal antennas

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The optically transparent antenna is becoming a very attractive proposition for various applications, such as wearable devices and vehicle radars. The fabrication of transparent flexible/conformal antennas is a long-lasting interest in academia and industry. However, the preparation of radio-frequency radiators with excellent conductivity and optical transmittance is still quite challenging. Herein, we introduce a facile approach to directly fabricate optically transparent flexible and conformal coplanar waveguide-fed antennas using programmable electrohydrodynamic lithography. Metallic meshes with transmittance above 90% have been successfully created based on the conformal electrohydrodynamic printing of high-viscosity photoresist masks, and the corresponding sheet resistance can be tuned down to ∼2 Ω/□. Then, the geometrical structure of the proposed transparent antenna has been systematically optimized because of the basic radio frequency components, including the radiator, feeder line, ground plane, and size of metallic meshes. Optically transparent flexible and conformal antennas are finally obtained, presenting an optical transmittance of 92% and 55%, respectively. The simulated and measured results demonstrate that the transparent antennas with a good optoelectronic performance indeed exhibit a nice electromagnetic behavior. We believe that this newly developed conformal electrohydrodynamic lithography method can be utilized to fabricate a variety of other transparent electronic devices, such as transparent electromagnetic shielding meshes on aircraft canopies, in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng Y J, Xu H, Ma D, et al. Millimeter-wave shaped-beam substrate integrated conformal array antenna. IEEE Trans Antennas Propagat, 2013,61: 4558–4566

    Article  Google Scholar 

  2. Das R, Yoo H. A wideband circularly polarized conformal endoscopic antenna system for high-speed data transfer. IEEE Trans Antennas Propagat, 2017,65: 2816–2826

    Article  MATH  Google Scholar 

  3. Bao Z, Guo Y X, Mittra R. An ultrawideband conformal capsule antenna with stable impedance matching. IEEE Trans Antennas Propagat, 2017,65: 5086–5094

    Article  Google Scholar 

  4. Saeed S M, Balanis C A, Birtcher C R. Inkjet-printed flexible re-configurable antenna for conformal wlan/wimax wireless devices. Antennas Wirel Propag Lett, 2016,15: 1979–1982

    Article  Google Scholar 

  5. Kang S H, Jung C W. Transparent patch antenna using metal mesh. IEEE Trans Antennas Propagat, 2018,66: 2095–2100

    Article  Google Scholar 

  6. Kim J, Kim M, Lee M S, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun, 2017,8: 1–8

    Google Scholar 

  7. Elmobarak Elobaid H A, Abdul Rahim S K, Himdi M, et al. A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks. Antennas Wirel Propag Lett, 2017,16: 1333–1336

    Article  Google Scholar 

  8. Li W, Akhter Z, Vaseem M, et al. Optically transparent and flexible radio frequency electronics through printing technologies. Adv Mater Technol, 2022,7: 2101277

    Article  Google Scholar 

  9. Ding C, Liu L, Luk K M. An optically transparent dual-polarized stacked patch antenna with metal-mesh films. Antennas Wirel Propag Lett, 2019,18: 1981–1985

    Article  Google Scholar 

  10. Hakimi S, Rahim S K A, Abedian M, et al. CPW-fed transparent antenna for extended ultrawideband applications. Antennas Wirel Propag Lett, 2014,13: 1251–1254

    Article  Google Scholar 

  11. Zhang Y, Shen S, Chiu C Y, et al. Hybrid RF-solar energy harvesting systems utilizing transparent multiport micromeshed antennas. IEEE Trans Microwave Theor Technol, 2019,67: 4534–4546

    Article  Google Scholar 

  12. Xu J, Shen D Y, Zhang X P, et al. A compact disc ultrawideband (UWB) antenna with quintuple band rejections. Antennas Wirel Propag Lett, 2012,11: 1517–1520

    Article  Google Scholar 

  13. Koohestani M, Golpour M. U-shaped microstrip patch antenna with novel parasitic tuning stubs for ultra wideband applications. IET Microw Antennas Propag, 2010,4: 938–946

    Article  Google Scholar 

  14. Rani M S A, Rahim S K A, Kamarudin M R, et al. Electromagnetic behaviors of thin film CPW-fed CSRR loaded on UWB transparent antenna. Antennas Wirel Propag Lett, 2014,13: 1239–1242

    Article  Google Scholar 

  15. Govind R K, Mondal I, Baishya K, et al. Large-area fabrication of high performing, flexible, transparent conducting electrodes using screen printing and spray coating techniques. Adv Mater Technol, 2021,7: 2101120

    Article  Google Scholar 

  16. Outaleb N, Pinel J, Drissi M, et al. Microwave planar antenna with RF-sputtered indium tin oxide films. Microw Opt Technol Lett, 2000,24: 3–7

    Article  Google Scholar 

  17. Malek M A, Hakimi S, Abdul Rahim S K, et al. Dual-band CPW-fed transparent antenna for active RFID tags. Antennas Wirel Propag Lett, 2015,14: 919–922

    Article  Google Scholar 

  18. Li W, Yarali E, Bakytbekov A, et al. Highly transparent and conductive electrodes enabled by scalable printing-and-sintering of silver nanowires. Nanotechnology, 2020,31: 395201

    Article  Google Scholar 

  19. Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009,457: 706–710

    Article  Google Scholar 

  20. Tamagnone M, Gómez-Díaz J S, Mosig J R, et al. Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J Appl Phys, 2012,112: 114915

    Article  Google Scholar 

  21. Vacirca N A, McDonough J K, Jost K, et al. Onion-like carbon and carbon nanotube film antennas. Appl Phys Lett, 2013,103: 1382374

    Article  Google Scholar 

  22. Elwi T A, Al-Rizzo H M, Rucker D G, et al. Multi-walled carbon nanotube-based RF antennas. Nanotechnology, 2010,21: 045301

    Article  Google Scholar 

  23. Hautcoeur J, Talbi L, Hettak K. Feasibility study of optically transparent CPW-fed monopole antenna at 60-GHz ism bands. IEEE Trans Antennas Propagat, 2013,61: 1651–1657

    Article  Google Scholar 

  24. Hautcoeur J, Colombel F, Himdi M, et al. Large and optically transparent multilayer for broadband h-shaped slot antenna. Antennas Wirel Propag Lett, 2013,12: 933–936

    Article  Google Scholar 

  25. Ariga K, Ito M, Mori T, et al. Atom/molecular nanoarchitectonics for devices and related applications. Nano Today, 2019,28: 100762

    Article  Google Scholar 

  26. Wang J, Liang M, Fang Y, et al. Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv Mater, 2012,24: 2874–2878

    Article  Google Scholar 

  27. Han X, Xu R, Sun B, et al. Conductive silver grid electrode for flexible and transparent memristor applications. Adv Electron Mater, 2021,7: 2000948

    Article  Google Scholar 

  28. Santos M C G, da Silva D R, Pinto P S, et al. Buckypapers of carbon nanotubes and cellulose nanofibrils: Foldable and flexible electrodes for redox supercapacitors. Electrochim Acta, 2020,349: 136241

    Article  Google Scholar 

  29. Kim H S, Cha J K, Kim J H, et al. Highly flexible and patternable multiwalled-carbon nanotube/nitrocellulose hybrid conducting paper electrodes as heating platforms for effective ignition of nanoenergetic materials. ACS Appl Mater Interfaces, 2020,12: 28586–28595

    Article  Google Scholar 

  30. Chen Y, Yue Y, Wang S, et al. Graphene as a transparent and conductive electrode for organic optoelectronic devices. Adv Electron Mater, 2019,5: 1900247

    Article  Google Scholar 

  31. Gupta R, Rao K D M, Kulkarni G U. Transparent and flexible capacitor fabricated using a metal wire network as a transparent conducting electrode. RSC Adv, 2014,4: 31108–31112

    Article  Google Scholar 

  32. Chen X, Yin Y, Yuan W, et al. Transparent thermotherapeutic skin patch based on highly conductive and stretchable copper mesh heater. Adv Electron Mater, 2021,7: 2100611

    Article  Google Scholar 

  33. Li M, Zuo W W, Ricciardulli A G, et al. Embedded nickel-mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: Toward a portable mobile energy source. Adv Mater, 2020,32: 2003422

    Article  Google Scholar 

  34. Li H, Zhu X, Li Z, et al. Preparation of nano silver paste and applications in transparent electrodes via electric-field driven micro-scale 3D printing. Nanomaterials, 2020,10: 107

    Article  Google Scholar 

  35. Jewell E, Hamblyn S, Claypole T, et al. Deposition of high conductivity low silver content materials by screen printing. Coatings, 2015,5: 172–185

    Article  Google Scholar 

  36. Yang J, Zi D, Zhu X, et al. Printed flexible transparent electrodes for harsh environments. Adv Mater Technol, 2022,7: 2101087

    Article  Google Scholar 

  37. Qiu H, Liu H, Jia X, et al. Compact, flexible, and transparent antennas based on embedded metallic mesh for wearable devices in 5G wireless network. IEEE Trans Antennas Propagat, 2021,69: 1864–1873

    Article  Google Scholar 

  38. Seeley Z M, Phillips I R, Rudzik T J, et al. Material jet printing of transparent ceramic Yb:YAG planar waveguides. Opt Lett, 2021,46: 2433–2436

    Article  Google Scholar 

  39. Park J, Kim G, Lee B, et al. Highly customizable transparent silver nanowire patterning via inkjet-printed conductive polymer templates formed on various surfaces. Adv Mater Technol, 2020,5: 2000042

    Article  Google Scholar 

  40. An S, Jo H S, Kim D Y, et al. Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Adv Mater, 2016,28: 7149–7154

    Article  Google Scholar 

  41. Hsu P C, Kong D, Wang S, et al. Electrolessly deposited electrospun metal nanowire transparent electrodes. J Am Chem Soc, 2014,136: 10593–10596

    Article  Google Scholar 

  42. Bai X, Liao S, Huang Y, et al. Continuous draw spinning of extra-long silver submicron fibers with micrometer patterning capability. Nano Lett, 2017,17: 1883–1891

    Article  Google Scholar 

  43. Pan C, Kumar K, Li J, et al. Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing. Adv Mater, 2018,30: 1706937

    Article  Google Scholar 

  44. Qin R, Hu M, Zhang N, et al. Flexible fabrication of flexible electronics: A general laser ablation strategy for robust large-area copper-based electronics. Adv Electron Mater, 2019,5: 1900365

    Article  Google Scholar 

  45. Chen X, Nie S, Guo W, et al. Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80000. Adv Electron Mater, 2019,5: 1800991

    Article  Google Scholar 

  46. Adams J J, Duoss E B, Malkowski T F, et al. Conformal printing of electrically small antennas on three-dimensional surfaces. Adv Mater, 2011,23: 1335–1340

    Article  Google Scholar 

  47. Yin H, Liang Q, Duan Y, et al. 3D printing of a thermally programmable conformal metasurface. Adv Mater Technol, 2022,7: 2101479

    Article  Google Scholar 

  48. Huang Y, Bu N, Duan Y, et al. Electrohydrodynamic direct-writing. Nanoscale, 2013,5: 12007–12017

    Article  Google Scholar 

  49. Liu J, Xiao L, Rao Z, et al. High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices. Adv Mater Technol, 2018,3: 1800155

    Article  Google Scholar 

  50. Ding Y, Zhu C, Liu J, et al. Flexible small-channel thin-film transistors by electrohydrodynamic lithography. Nanoscale, 2017,9: 19050–19057

    Article  Google Scholar 

  51. Huang Y A, Wu H, Zhu C, et al. Programmable robotized ‘transfer-and-jet’ printing for large, 3D curved electronics on complex surfaces. Int J Extrem Manuf, 2021,3: 045101

    Article  Google Scholar 

  52. Huang Y A, Ding Y, Bian J, et al. Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017,40: 432–439

    Article  Google Scholar 

  53. Langley D, Giusti G, Mayousse C, et al. Flexible transparent conductive materials based on silver nanowire networks: A review. Nanotechnology, 2013,24: 452001

    Article  Google Scholar 

  54. Hosain M M, Kumari S, Tiwary A K. Design of circular disc monopole antenna for UWB application. In: Proceedings of 1st International Conference on Microelectronics, Computing & Communication Systems (MCCS). Adv Reg Telecom Training Ctr, Ranchi, 2015. 453: 339–352

    Google Scholar 

  55. Bai N, Shen J, Fan H, et al. A broad bandwidth metamaterial pillbox window for w-band traveling-wave tubes. IEEE Electron Device Lett, 2021,42: 1228–1231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongAn Huang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFB3200703) and the National Natural Science Foundation of China (Grant Nos. 52175537, 51975235, and 52188102). The authors would like to thank the Flexible Electronics Manufacturing Laboratory in the Comprehensive Experiment Center for Advanced Manufacturing and Equipment Technology. The computation is completed in the HPC Platform of Huazhong University of Science and Technology.

Supporting Information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, D., Xie, H., Tian, Y. et al. Electrohydrodynamic lithography of metallic mesh for optically transparent flexible and conformal antennas. Sci. China Technol. Sci. 66, 2–12 (2023). https://doi.org/10.1007/s11431-022-2240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2240-6

Navigation