Skip to main content
Log in

Mechanical behavior of TiAl alloys

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Intermetallic TiAl alloys attract much attention in advanced engineering fields due to their low density (3.9–4.2 g/cm3) and excellent high-temperature properties. After more than half a century of research and development, TiAl alloys have found applications in aerospace, automotive, and related industries. However, as a kind of semi-brittle materials, intermetallic TiAl alloys exhibit different mechanical behavior from metallic and ceramic materials. Thus, it is necessary to systematically understand their mechanical behavior to ensure further developments and safe engineering applications. In this paper, the principal mechanical behavior of TiAl alloys was reviewed comprehensively, including tension, creep, fatigue, and strengthening mechanisms. The mechanical performance and the corresponding deformation mechanisms are summarized and discussed in detail. The future directions of mechanical research on TiAl alloys are also overviewed to expedite their extensive utilization in engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines. Mater at High Temp, 2016, 33: 549–559

    Google Scholar 

  2. Schütze M. Single-crystal performance boost. Nat Mater, 2016, 15: 823–824

    Google Scholar 

  3. Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: John Wiley & Sons, 2011

    Google Scholar 

  4. Smarsly W, Esslinger J, Clemens H. Status of titanium aluminide for aero engine applications. Paris: Titanium Europe, 2016

    Google Scholar 

  5. Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater, 2013, 15: 191–215

    Google Scholar 

  6. Edwards T E J. Recent progress in the high-cycle fatigue behaviour of γ-TiAl alloys. Mater Sci Tech, 2018, 34: 1919–1939

    Google Scholar 

  7. Appel F, Clemens H, Fischer F D. Modeling concepts for inter-metallic titanium aluminides. Prog Mater Sci, 2016, 81: 55–124

    Google Scholar 

  8. London B, Larsen D, Wheeler D, et al. Structural Intermetallics. TMS, Warrendale, U.S. Department of Energy, 1993, 151

  9. Yang C, Hu D, Huang A, et al. Solidification and grain refinement in Ti45Al2Mn2Nb1B subjected to fast cooling. Intermetallics, 2013, 32: 64–71

    Google Scholar 

  10. Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics, 2014, 44: 128–140

    Google Scholar 

  11. Appel F, Paul J D H, Oehring M. Phase transformations during creep of a multiphase TiAl-based alloy with a modulated microstructure. Mater Sci Eng-A, 2009, 510–511: 342–349

    Google Scholar 

  12. Kawabata T, Tamura T, Izumi O. Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl. Metall Trans A, 1993, 24: 141–150

    Google Scholar 

  13. Huang S C, Hall E L. The effects of Cr additions to binary TiAl-base alloys. Metall Trans A, 1991, 22: 2619–2627

    Google Scholar 

  14. Zhang W J, Liu Z C, Chen G L, et al. Deformation mechanisms in a high-Nb containing γ-TiAl alloy at 900°C. Mater Sci Eng-A, 1999, 271: 416–423

    Google Scholar 

  15. Zhang W J, Liu Z C, Chen G L, et al. Dislocation structure in a Ti-45 at.% Al-10 at.% Nb alloy deformed at room temperature. Philos Mag A, 1999, 79: 1073–1078

    Google Scholar 

  16. Kim J H, Kim S W, Lee H N, et al. Effects of Si and C additions on the thermal stability of directionally solidified TiAl-Nb alloys. Intermetallics, 2005, 13: 1038–1047

    Google Scholar 

  17. Kartavykh A V, Asnis E A, Piskun N V, et al. A promising microstructure/deformability adjustment of β-stabilized γ-TiAl intermetallics. Mater Lett, 2016, 162: 180–184

    Google Scholar 

  18. Chen G, Peng Y, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater, 2016, 15: 876–881

    Google Scholar 

  19. Kim Y W. Ordered intermetallic alloys, part III: Gamma titanium aluminides. J Miner Metals Mater Soc, 1994, 46: 30–39

    Google Scholar 

  20. Lin J P, Xu X J, Wang Y L, et al. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics, 2007, 15: 668–674

    Google Scholar 

  21. Beddoes J, Zhao L, Au P, et al. The brittle-ductile transition in HIP consolidated near γ-TiAl + W and TiAl + Cr powder alloys. Mater Sci Eng-A, 1995, 192–193: 324–332

    Google Scholar 

  22. Tian W H, Nemoto M. Effect of carbon addition on the microstructures and mechanical properties of γ-TiAl alloys. Intermetallics, 1997, 5: 237–244

    Google Scholar 

  23. Kim Y W, Kim S L. Effects of microstructure and C and Si additions on elevated temperature creep and fatigue of gamma TiAl alloys. Intermetallics, 2014, 53: 92–101

    Google Scholar 

  24. Venkateswara Rao K T, Ritchie R O. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite. Acta Mater, 1998, 46: 4167–4180

    Google Scholar 

  25. Bewlay B P, Weimer M, Kelly T, et al. The science, technology, and implementation of TiAl alloys in commercial aircraft engines. MRS Proc, 2013, 1516: 49–58

    Google Scholar 

  26. Kim Y W, Dimiduk D M. Progress in the understanding of gamma titanium aluminides. J Miner Metals Mater Soc, 1991, 43: 40–47

    Google Scholar 

  27. Yao K F, Inui H, Kishida K, et al. Plastic deformation of V- and Zr-alloyed PST TiAl in tension and compression at room temperature. Acta Metall Mater, 1995, 43: 1075–1086

    Google Scholar 

  28. Umeda H, Kishida K, Inui H, et al. Effects of Al-concentration and lamellar spacing on the room-temperature strength and ductility of PST crystals of TiAl. Mater Sci Eng-A, 1997, 239–240: 336–343

    Google Scholar 

  29. Lee H N, Johnson D R, Inui H, et al. Microstructural control through seeding and directional solidification of TiAl alloys containing Mo and C. Acta Mater, 2000, 48: 3221–3233

    Google Scholar 

  30. Kim S W, Wang P, Oh M H, et al. Mechanical properties of Si- and C-doped directionally solidified TiAl-Nb alloys. Intermetallics, 2004, 12: 499–509

    Google Scholar 

  31. Jung I S, Jang H S, Oh M H, et al. Microstructure control of TiAl alloys containing β stabilizers by directional solidification. Mater Sci Eng-A, 2002, 329–331: 13–18

    Google Scholar 

  32. Johnson D R, Masuda Y, Inui H, et al. Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material. Acta Mater, 1997, 45: 2523–2533

    Google Scholar 

  33. Johnson D R, Inui H, Yamaguchi M. Directional solidification and microstructural control of the TiAlTi3Al lamellar microstructure in TiAlSi alloys. Acta Mater, 1996, 44: 2523–2535

    Google Scholar 

  34. Johnson D R, Chihara K, Inui H, et al. Microstructural control of TiAl-Mo-B alloys by directional solidification. Acta Mater, 1998, 46: 6529–6540

    Google Scholar 

  35. Inui H, Oh M H, Nakamura A, et al. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl. Acta Metall Mater, 1992, 40: 3095–3104

    Google Scholar 

  36. Xiang H, Guo W. Synergistic effects of twin boundary and phase boundary for enhancing ultimate strength and ductility of lamellar TiAl single crystals. Int J Plast, 2022, 150: 103197

    Google Scholar 

  37. Zhang Y, Wang X, Kong F, et al. Microstructure, texture and mechanical properties of Ti-43Al-9V-0.2Y alloy hot-rolled at various temperatures. J Alloys Compd, 2019, 777: 795–805

    Google Scholar 

  38. Feng Y, Xu C, Bu C, et al. Research on austenitizing behavior and mechanical properties of 40CrNi2Si2MoVA steel. Adv Mater Processing Technologies, 2017, 3: 616–626

    Google Scholar 

  39. Morris M A. Dislocation configurations in two phase TiAl alloys. II. Structures after compression. Philos Mag A, 1993, 68: 259–278

    Google Scholar 

  40. Appel F, Wagner R. Microstructure and deformation of two-phase γ-titanium aluminides. Mater Sci Eng-R-Rep, 1998, 22: 187–268

    Google Scholar 

  41. Huang S C, Hall E L. Microstructure and deformation of rapidly solidified TiAl alloys. MRS Online Proceedings Library (OPL). Cambridge: Cambridge University Press, 1988, 133

    Google Scholar 

  42. Greenberg B F, Anisimov V I, Gornostirev Y N, et al. Possible factors affecting the brittleness of the intermetallic compound TiAl. II. Peierls manyvalley relief. Scripta Metall, 1988, 22: 859–864

    Google Scholar 

  43. Zghal S, Coujou A, Couret A. Transmission of the deformation through γ-γ interfaces in a polysynthetically twinned TiAl alloy I. Ordered domain interfaces (120° rotational). Philos Mag A, 2001, 81: 345–364

    Google Scholar 

  44. Johnson L A, Pope D P, Stiegler J. High-temperature ordered inter-metallic alloys IV. In: Proceedings of the 4th MRS Symposium. Boston, 1990

  45. Yoo M H, Fu C L. Physical constants, deformation twinning, and microcracking of titanium aluminides. Metall Mat Trans A, 1998, 29: 49–63

    Google Scholar 

  46. Inui H, Kishida K, Misaki M, et al. Temperature dependence of yield stress, tensile elongation and deformation structures in poly-synthetically twinned crystals of Ti-Al. Philos Mag A, 1995, 72: 1609–1631

    Google Scholar 

  47. Baker I, Darolia R, Whittenberger J, et al. High-Temperature Ordered Intermetallic Alloys V. U.S. Department of Energy, 1993

  48. Zhang D, Li H, Liang X, et al. Microstructure characteristic for high temperature deformation of powder metallurgy Ti-47Al-2Cr-0.2Mo alloy. Mater Des, 2014, 59: 415–420

    Google Scholar 

  49. Cheng L, Chang H, Tang B, et al. Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy. J Alloys Compd, 2013, 552: 363–369

    Google Scholar 

  50. Gupta A, Wiezorek J M K. Microstructural evolution of PST-TiAl during low-rate compressive micro-straining at 1023 K in hard and soft orientations. Intermetallics, 2003, 11: 589–600

    Google Scholar 

  51. He N, Qi Z, Cheng Y, et al. Atomic-scale investigation on the interface structure of {\(2\bar 201\)} α2-Ti3Al deformation twins in polysynthetically twinned TiAl single crystals. Intermetallics, 2021, 128: 106995

    Google Scholar 

  52. Zupan M, Hemker K J. Yielding behavior of aluminum-rich single crystalline γ-TiAl. Acta Mater, 2003, 51: 6277–6290

    Google Scholar 

  53. Grégori F, Veyssière P. A microstructural analysis of Al-rich γ-TiAl deformed by < 0 1 1] dislocations. Mater Sci Eng A, 2001, 309: 87–91

    Google Scholar 

  54. Jeong B, Kim J, Lee T, et al. Systematic investigation of the deformation mechanisms of a γ-TiAl single crystal. Sci Rep, 2018, 8: 15200

    Google Scholar 

  55. Fujiwara T, Nakamura A, Hosomi M, et al. Deformation of poly-synthetically twinned crystals of TiAl with a nearly stoichiometric composition. Philos Mag A, 1990, 61: 591–606

    Google Scholar 

  56. Peng Y, Chen F, Wang M, et al. Relationship between mechanical properties and lamellar orientation of PST crystals in Ti-45Al-8Nb alloy. Acta Metall Sin, 2013, 49: 1457–1461

    Google Scholar 

  57. Kishida K, Johnson D R, Masuda Y, et al. Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys. Intermetallics, 1998, 6: 679–683

    Google Scholar 

  58. Kim S E, Lee Y T, Oh M H, et al. Directional solidification of TiAl base alloys using a polycrystalline seed. Mater Sci Eng-A, 2002, 329–331: 25–30

    Google Scholar 

  59. Yokoshima S, Yamaguchi M. Fracture behavior and toughness of PST crystals of TiAl. Acta Mater, 1996, 44: 873–883

    Google Scholar 

  60. Matsuo T, Nozaki T, Asai T, et al. Effect of lamellar plates on creep resistance in near gamma TiAl alloys. Intermetallics, 1998, 6: 695–698

    Google Scholar 

  61. Matsuo T, Nozaki T, Asai T, et al. Role of lamellar plates in creep of TiAl alloy with fully lamellar structure. Mater Sci Eng-A, 2002, 329–331: 774–779

    Google Scholar 

  62. Umakoshi Y, Yasuda H Y, Nakano T. Plastic anisotropy and fracture behavior of cyclically deformed TiAl polysynthetically twinned crystals. Mater Sci Eng-A, 1995, 192–193: 511–517

    Google Scholar 

  63. Kishida K, Inui H, Yamaguchi M. Deformation of lamellar structure in TiAl-Ti3Al two-phase alloys. Philos Mag A, 1998, 78: 1–28

    Google Scholar 

  64. Konieczny M. Mechanical properties and deformation behavior of laminated Ni-(Ni2Al3+NiAl3) and Ni-(Ni3Al+NiAl) composites. Mater Sci Eng-A, 2013, 586: 11–18

    Google Scholar 

  65. Sun W, You F, Kong F, et al. Enhanced tensile strength and fracture toughness of a Ti-TiAl metal-intermetallic laminate (MIL) composite. Intermetallics, 2020, 118: 106684

    Google Scholar 

  66. Embury J, Petch N, Wraith A, et al. The fracture of mild steel laminates. AIME Met Soc Trans, 1967, 239: 114–118

    Google Scholar 

  67. Yan S, Qi Z, Chen Y, et al. Interlamellar boundaries govern cracking. Acta Mater, 2021, 215: 117091

    Google Scholar 

  68. Nabarro F, Villiers H. The Physics of Creep and Creep-Resistant Alloys. London: Taylor & Francis Group, 1995

    Google Scholar 

  69. Padture N P. Advanced structural ceramics in aerospace propulsion. Nat Mater, 2016, 15: 804–809

    Google Scholar 

  70. Cheng L, Li J, Xue X, et al. General features of high temperature deformation kinetics for γ-TiAl-based alloys with DP/NG microstructures: Part I. A survey of mechanical data and development of unified rate-equations. Mater Sci Eng-A, 2016, 678: 389–401

    Google Scholar 

  71. Morris M A, Leboeuf M. II. Deformed microstructures during creep of TiAl alloys: role of mechanical twinning. Intermetallics, 1997, 5: 339–354

    Google Scholar 

  72. Malaplate J, Thomas M, Belaygue P, et al. Primary creep at 750°C in two cast and PM Ti48Al48Cr2Nb2 alloys. Acta Mater, 2006, 54: 601–611

    Google Scholar 

  73. Malaplate J, Caillard M, Couret P, et al. Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl. Philos Mag, 2004, 84: 3671–3687

    Google Scholar 

  74. Zhang W J, Deevi S C. The controlling factors in primary creep of TiAl-base alloys. Intermetallics, 2003, 11: 177–185

    Google Scholar 

  75. Hamada N, Ishikawa Y, Maruyama K, et al. Power-law creep diagram of γ-Ti-53Al intermetallics. Mater Sci Eng-A, 1995, 192–193: 716–721

    Google Scholar 

  76. Hayes R W, Martin P L. Tension creep of wrought single phase γTiAl. Acta Metall Mater, 1995, 43: 2761–2772

    Google Scholar 

  77. Oikawa H. Creep in titanium aluminides. Mater Sci Eng-A, 1992, 153: 427–432

    Google Scholar 

  78. Gorzel A, Sauthoff G. Diffusion creep of intermetallic TiAl alloys. Intermetallics, 1999, 7: 371–380

    Google Scholar 

  79. Ilyas M U, Kabir M R. Creep behaviour of two-phase lamellar TiAl: Crystal plasticity modelling and analysis. Intermetallics, 2021, 132: 107129

    Google Scholar 

  80. Appel F. Mechanistic understanding of creep in gamma-base titanium aluminide alloys. Intermetallics, 2001, 9: 907–914

    Google Scholar 

  81. Zhang W J, Spigarelli S, Cerri E, et al. Effect of heterogeneous deformation on the creep behaviour of a near-fully lamellar TiAl-base alloy at 750°C. Mater Sci Eng-A, 1996, 211: 15–22

    Google Scholar 

  82. Du X W, Zhu J, Kim Y W. Microstructural characterization of creep cavitation in a fully-lamellar TiAl alloy. Intermetallics, 2001, 9: 137–146

    Google Scholar 

  83. Beddoes J, Wallace W, Zhao L. Current understanding of creep behaviour of near γ-titanium aluminides. Int Mater Rev, 1995, 40: 197–217

    Google Scholar 

  84. Huang J S, Kim Y W. Creep deformation and fracture of a two-phase TiAl alloy. Scripta Metall Mater, 1991, 25: 1901–1906

    Google Scholar 

  85. Maruyama K, Yamamoto R, Nakakuki H, et al. Effects of lamellar spacing, volume fraction and grain size on creep strength of fully lamellar TiAl alloys. Mater Sci Eng A, 1997, 239: 419–428

    Google Scholar 

  86. Parthasarathy T A, Mendiratta M G, Dimiduk D M. Observations on the creep behavior of fully-lamellar polycrystalline TiAl: Identification of critical effects. Scr Mater, 1997, 37: 315–321

    Google Scholar 

  87. Parthasarathy T A, Subramanian P R, Mendiratta M G, et al. Phenomenological observations of lamellar orientation effects on the creep behavior of Ti-48 at.%Al PST crystals. Acta Mater, 2000, 48: 541–551

    Google Scholar 

  88. Zhang W J, Deevi S C, Chen G L. On the origin of superior high strength of Ti-45Al-10Nb alloys. Intermetallics, 2002, 10: 403–406

    Google Scholar 

  89. Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics, 2000, 8: 1283–1312

    Google Scholar 

  90. Bystrzanowski S, Bartels A, Clemens H, et al. Creep behaviour and related high temperature microstructural stability of Ti-46Al-9Nb sheet material. Intermetallics, 2005, 13: 515–524

    Google Scholar 

  91. Schwaighofer E, Rashkova B, Clemens H, et al. Effect of carbon addition on solidification behavior, phase evolution and creep properties of an intermetallic β-stabilized γ-TiAl based alloy. Intermetallics, 2014, 46: 173–184

    Google Scholar 

  92. Hecht U, Witusiewicz V, Drevermann A, et al. Grain refinement by low boron additions in niobium-rich TiAl-based alloys. Intermetallics, 2008, 16: 969–978

    Google Scholar 

  93. Wang Y, Xue X, Kou H, et al. The interfacial β0 phase strengthening the creep properties of powder hot isostatic pressing γ-TiAl alloy. Mater Res Lett, 2022, 10: 327–333

    Google Scholar 

  94. Wang Y, Xue X, Kou H, et al. Quasi-in-situ investigation on microstructure degradation of a fully lamellar TiAl alloy during creep. J. Mater Res Tech, 2022, 18: 4980–4989

    Google Scholar 

  95. Zhu H, Seo D Y, Maruyama K, et al. Strengthening of a fully lamellar TiAl + W alloy by dynamic precipitation of β phase during long-term creep. Scripta Mater, 2006, 54: 425–430

    Google Scholar 

  96. Zhu H, Maruyama K, Seo D Y, et al. Interfacial strengthening by soft phase in lamellar microstructure of TiAl alloys. Appl Phys Lett, 2007, 90: 294

    Google Scholar 

  97. Zhu H, Seo D Y, Maruyama K. Strengthening of lamellar TiAl alloys by precipitation bands of βo particles. Mater Sci Eng-A, 2009, 510–511: 14–19

    Google Scholar 

  98. Couret A, Reyes D, Thomas M, et al. Effect of ageing on the properties of the W-containing IRIS-TiAl alloy. Acta Mater, 2020, 199: 169–180

    Google Scholar 

  99. Powell G W, Mahmoud S E. Metals Handbook, Volume 11. Failure Analysis and Prevention. American Society for Metals, Metals Park, 1986. 843

  100. Chan K S. The fatigue resistance of TiAl-based alloys. J Miner Metals Mater Soc, 1997, 49: 53–58

    Google Scholar 

  101. Trail S J, Bowen P. Effects of stress concentrations on the fatigue life of a gamma-based titanium aluminide. Mater Sci Eng-A, 1995, 192–193: 427–434

    Google Scholar 

  102. Xue H, Tao H, Bayraktar E, et al. High-cycle fatigue of a TiAl alloy in three-point bending test. J Mech Strength, 2008, 30: 112–116

    Google Scholar 

  103. Bayraktar E, Bathias C, Hongquian X, et al. On the giga cycle fatigue behaviour of two-phase (α2+γ) TiAl alloy. Int J Fatigue, 2004, 26: 1263–1275

    Google Scholar 

  104. Sastry S M L, Lipsitt H A. Fatigue deformation of TiAl base alloys. Metallurg Trans A, 1977, 8: 299–308

    Google Scholar 

  105. Ham R K. A review of the mechanisms of fatigue. Canadian Metall Q, 2013, 5: 161–179

    Google Scholar 

  106. Wu Z, Hu R, Zhang T, et al. Microstructure determined fracture behavior of a high Nb containing TiAl alloy. Mater Sci Eng-A, 2016, 666: 297–304

    Google Scholar 

  107. Wu Y, Hu R, Yang J, et al. High-temperature rotary-bending fatigue characteristics of a high Nb-containing beta-gamma TiAl alloy. Mater Sci Eng-A, 2018, 735: 40–48

    Google Scholar 

  108. Tang B, Zhu B, Bi W, et al. Effect of Microstructure on the High-Cycle Fatigue Behavior of Ti(43–44)Al4Nb1Mo (TNM) Alloys. Metals, 2019, 9: 1043

    Google Scholar 

  109. Huang Z W, Hu W. Thermal stability of an intermediate strength fully lamellar Ti-45Al-2Mn-2Nb-0.8 vol.% TiB2 alloy. Intermetallics, 2014, 54: 49–55

    Google Scholar 

  110. Filippini M, Beretta S, Patriarca L, et al. Defect tolerance of a gamma titanium aluminide alloy. Procedia Eng, 2011, 10: 3677–3682

    Google Scholar 

  111. Jha S K, Larsen J M, Rosenberger A H. The role of competing mechanisms in the fatigue life variability of a nearly fully-lamellar γ-TiAl based alloy. Acta Mater, 2005, 53: 1293–1304

    Google Scholar 

  112. Zhu H, Wei T, Carr D, et al. Assessment of titanium aluminide alloys for high-temperature nuclear structural applications. J Miner Metals Mater Soc, 2012, 64: 1418–1424

    Google Scholar 

  113. Rugg D, Dixon M, Burrows J. High-temperature application of titanium alloys in gas turbines. Material life cycle opportunities and threats—an industrial perspective. Mater at High Temp, 2016, 33: 536–541

    Google Scholar 

  114. Kim Y W, Wagner R, Yamaguchi M. Gamma titanium aluminides. U. S. Department of Energy, 1995

  115. Ritchie R O, Dauskardt R H. Cyclic fatigue of ceramics. J Ceram Soc Jpn, 1991, 99: 1047–1062

    Google Scholar 

  116. Hojo M, Tanaka K, Gustafson C G, et al. Effect of stress ratio on near-threshold propagation of delimination fatigue cracks in unidirectional CFRP. Compos Sci Technol, 1987, 29: 273–292

    Google Scholar 

  117. Dahar M S, Seifi S M, Bewlay B P, et al. Effects of test orientation on fracture and fatigue crack growth behavior of third generation ascast Ti-48Al-2Nb-2Cr. Intermetallics, 2015, 57: 73–82

    Google Scholar 

  118. Campbell J P, Venkateswara Rao K T, Ritchie R O. On the role of microstructure in fatigue-crack growth of γ-based titanium aluminides. Mater Sci Eng A, 1997, 239–240: 722–728

    Google Scholar 

  119. Liaw P K, Lea T R, Logsdon W A. Near-threshold fatigue crack growth behavior in metals. Acta Metall, 1983, 31: 1581–1587

    Google Scholar 

  120. Rosenberger A H. Effect of environment on the fatigue crack growth of gamma titanium aluminide alloys at ambient temperatures. Scripta Mater, 2001, 44: 2653–2659

    Google Scholar 

  121. Gloanec A L, Hénaff G, Bertheau D, et al. Fatigue crack growth behaviour of a gamma-titanium-aluminide alloy prepared by casting and powder metallurgy. Scripta Mater, 2003, 49: 825–830

    Google Scholar 

  122. Wessel W, Zeismann F, Brueckner-Foit A. Short fatigue cracks in intermetallic γ-TiAl-alloys. Fatigue Fract Engng Mater Struct, 2015, 38: 1507–1518

    Google Scholar 

  123. Miao J, Pollock T M, Wayne Jones J. Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater, 2012, 60: 2840–2854

    Google Scholar 

  124. Wessel W, Mildner J, Pitz P, et al. Micronotches for studying growth of small cracks. Fatigue Fract Engng Mater Struct, 2015, 38: 673–680

    Google Scholar 

  125. Hénaff G, Odemer G, Tonneau-Morel A. Environmentally-assisted fatigue crack growth mechanisms in advanced materials for aerospace applications. Int J Fatigue, 2007, 29: 1927–1940

    MATH  Google Scholar 

  126. Bowen P, Chave R A, James A W. Cyclic crack growth in titanium aluminides. Mater Sci Eng A, 1995, 192–193: 443–456

    Google Scholar 

  127. Mabru C, Hénaff G, Petit J. Environmental influence on fatigue crack propagation in TiAl alloys. Intermetallics, 1997, 5: 355–360

    Google Scholar 

  128. Campbell J P, Kruzic J J, Lillibridge S, et al. On the growth of small fatigue cracks in γ-based titanium aluminides. Scripta Mater, 1997, 37: 707–712

    Google Scholar 

  129. McKelvey A L, Rao K T V, Ritchie R O. On the anomalous temperature dependence of fatigue-crack growth in γ-based titanium aluminides. Scripta Mater, 1997, 37: 1797–1803

    Google Scholar 

  130. Oh M H, Inui H, Misaki M, et al. Environmental effects on the room temperature ductility of polysynthetically twinned (PST) crystals of TiAl. Acta Metall Mater, 1993, 41: 1939–1949

    Google Scholar 

  131. Liu C T, Lee E H, McKamey C G. An environmental effect as the major cause for room-temperature embrittlement in FeAl. Scripta Metall, 1989, 23: 875–880

    Google Scholar 

  132. Liu C T, Kim Y W Y W. Room-temperature environmental embrittlement in a TiAl alloy. Scripta Metall Mater, 1992, 27: 599–603

    Google Scholar 

  133. Wang S, Nagao A, Sofronis P, et al. Assessment of the impact of hydrogen on the stress developed ahead of a fatigue crack. Acta Mater, 2019, 174: 181–188

    Google Scholar 

  134. Wang S, Nygren K E, Nagao A, et al. On the failure of surface damage to assess the hydrogen-enhanced deformation ahead of crack tip in a cyclically loaded austenitic stainless steel. Scripta Mater, 2019, 166: 102–106

    Google Scholar 

  135. Soboyejo W O, Aswath P B, Mercer C. Mechanisms of fatigue crack growth in Ti-48Al at ambient and elevated temperature. Scripta Metall Mater, 1995, 33: 1169–1176

    Google Scholar 

  136. Rao K T V, Kim Y W, Ritchie R O. High-temperature fatigue-crack growth behavior in a two-phase (γ + α2) TiAl intermetallic alloy. Scripta Metall Mater, 1995, 33: 459–465

    Google Scholar 

  137. McKelvey A L, Venkateswara Rao K T, Ritchie R O. High-temperature fracture and fatigue-crack growth behavior of an XD gam-ma-based titanium aluminide intermetallic alloy. Metall Mat Trans A, 2000, 31: 1413–1423

    Google Scholar 

  138. Yang J, Li H, Hu D, et al. Lamellar orientation effect on fatigue crack propagation threshold in coarse grained Ti46Al8Nb. Mater Sci Tech, 2014, 30: 1905–1910

    Google Scholar 

  139. Zhang M, Song S P, Yu L, et al. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750°C. Mater Sci Eng-A, 2015, 622: 30–36

    Google Scholar 

  140. Umakoshi Y, Yasuda H Y, Nakano T. Plastic anisotropy and fatigue of TiAl PST crystals: A review. Intermetallics, 1996, 4: S65–S75

    Google Scholar 

  141. Chen Y, Cao Y, Qi Z, et al. Increasing high-temperature fatigue resistance of polysynthetic twinned TiAl single crystal by plastic strain delocalization. J Mater Sci Tech, 2021, 93: 53–59

    Google Scholar 

  142. Petch N J. The cleavage strength of polycrystals. J Iron Steel Inst, 1953, 174: 25–28

    Google Scholar 

  143. Vasudevan V K, Court S A, Kurath P, et al. Effect of grain size and temperature on the yield stress of the intermetallic compound TiAl. Scripta Metall, 1989, 23: 467–469

    Google Scholar 

  144. Huang S C. Temperature dependence of microhardness and yield stress in rapidly solidified tial alloys. Scripta Metall, 1988, 22: 1885–1888

    Google Scholar 

  145. Lipsitt H A, Shechtman D, Schafrik R E. The deformation and fracture of TiAl at elevated temperatures. Metall Trans A, 1975, 6: 1991–1996

    Google Scholar 

  146. Mercer C, Soboyejo W O. Hall-petch relationships in gamma titanium aluminides. Scripta Mater, 1996, 35: 17–22

    Google Scholar 

  147. Jung J Y, Park J K, Chun C H, et al. Hall-Petch relation in two-Phasec TiAl alloys. Mater Sci Eng-A, 1996, 220: 185–190

    Google Scholar 

  148. Maziasz P J, Liu C T. Development of ultrafine lamellar structures in two-phase γ-TiAl alloys. Metall Mat Trans A, 1998, 29: 105–117

    Google Scholar 

  149. Liu C T, Schneibel J H, Maziasz P J, et al. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics, 1996, 4: 429–440

    Google Scholar 

  150. Palomares-García A J, Pérez-Prado M T, Molina-Aldareguia J M. Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression. Acta Mater, 2017, 123: 102–114

    Google Scholar 

  151. Umakoshi Y, Nakano T, Yamane T. The effect of orientation and lamellar structure on the plastic behavior of TiAl crystals. Mater Sci Eng-A, 1992, 152: 81–88

    Google Scholar 

  152. Appel F, Sparka U, Wagner R. Work hardening and recovery of gamma base titanium aluminides. Intermetallics, 1999, 7: 325–334

    Google Scholar 

  153. Appel F. An electron microscope study of mechanical twinning and fracture in TiAl alloys. Philos Mag, 2005, 85: 205–231

    Google Scholar 

  154. Liu S, Ding H, Zhang H, et al. High-density deformation nanotwin induced significant improvement in the plasticity of polycrystalline γ-TiAl-based intermetallic alloys. Nanoscale, 2018, 10: 11365–11374

    Google Scholar 

  155. Schnabel J E, Bargmann S, Paul J D H, et al. Work hardening and recovery in fully lamellar TiAl: Relative activity of deformation systems. Philos Mag, 2018, 99: 148–180

    Google Scholar 

  156. Appel F, Paul J D H, Oehring M, et al. Creep behavior of TiAl alloys with enhanced high-temperature capability. Metall Mat Trans A, 2003, 34: 2149–2164

    Google Scholar 

  157. Park H S, Hwang S K, Lee C M, et al. Microstructural refinement and mechanical properties improvement of elemental powder metallurgy processed Ti-46.6Al-1.4Mn-2Mo alloy by carbon addition. Metall Mat Trans A, 2001, 32: 251–259

    Google Scholar 

  158. Karadge M, Gouma P I, Kim Y W. Precipitation strengthening in K5-series γ-TiAl alloyed with silicon and carbon. Metall Mat Trans A, 2003, 34: 2129–2138

    Google Scholar 

  159. De Graef M, Löfvander J P A, McCullough C, et al. The evolution of metastable Bf borides in a Ti-Al-B alloy. Acta Metall Mater, 1992, 40: 3395–3406

    Google Scholar 

  160. Godfrey A B, Loretto M H. The nature of complex precipitates associated with the addition of boron to a γ-based titanium aluminide. Intermetallics, 1996, 4: 47–53

    Google Scholar 

  161. Inkson B J, Boothroyd C B, Humphreys C J. Boride morphology in a (Fe, V, B) Ti-alloy containing B2-phase. Acta Metall Mater, 1995, 43: 1429–1438

    Google Scholar 

  162. Tian W H, Nemoto M. Precipitation behavior of nitrides in L10-ordered TiAl. Intermetallics, 2005, 13: 1030–1037

    Google Scholar 

  163. Tian W H, Sano T, Nemoto M. Structure of perovskite carbide and nitride precipitates in L10-ordered TiAl. Philos Mag A, 1993, 68: 965–976

    Google Scholar 

  164. Appel F, Oehring M, Paul J D H. A novel in situ composite structure in TiAl alloys. Mater Sci Eng-A, 2008, 493: 232–236

    Google Scholar 

  165. Appel F, Oehring M, Paul J. Nano-scale design of TiAl alloys based on β-phase decomposition. Adv Eng Mater, 2006, 8: 371–376

    Google Scholar 

  166. Song L, Zhang L Q, Xu X J, et al. Omega phase in as-cast high-Nb-containing TiAl alloy. Scripta Mater, 2013, 68: 929–932

    Google Scholar 

  167. Rackel M W, Stark A, Gabrisch H, et al. Orthorhombic phase formation in a Nb-rich γ-TiAl based alloy—An in situ synchrotron radiation investigation. Acta Mater, 2016, 121: 343–351

    Google Scholar 

  168. Ren G, Sun J. High-resolution electron microscopy characterization of modulated structure in high Nb-containing lamellar γ-TiAl alloy. Acta Mater, 2018, 144: 516–523

    Google Scholar 

  169. Ren G, Dai C, Mei W, et al. Formation and temporal evolution of modulated structure in high Nb-containing lamellar γ-TiAl alloy. Acta Mater, 2019, 165: 215–227

    Google Scholar 

  170. Schloffer M, Rashkova B, Schöberl T, et al. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness. Acta Mater, 2014, 64: 241–252

    Google Scholar 

  171. Wolf W, Podloucky R, Rogl P, et al. Atomic modelling of Nb, V, Cr and Mn substitutions in γ-TiAl. 2: Electronic structure and site preference. Intermetallics, 1996, 4: 201–209

    Google Scholar 

  172. Kawabata T, Fukai H, Izumi O. Effect of ternary additions on mechanical properties of TiAl. Acta Mater, 1998, 46: 2185–2194

    Google Scholar 

  173. Jayaprakash M, Ping D H, Yamabe-Mitarai Y. Effect of Zr and Si addition on high temperature mechanical properties of near-α Ti-Al-Zr-Sn based alloys. Mater Sci Eng-A, 2014, 612: 456–461

    Google Scholar 

  174. Morris M A. Deformation mechanisms in fine-grained Ti-Al alloys. Mater Sci Eng-A, 1997, 224: 12–20

    Google Scholar 

  175. Liu Z, Kim Y, Li S, et al. Effect of Nb and Al on high temperature strength of γ-TiAl. Chin J Nonferrous Met, 2000, 10: 470–475

    Google Scholar 

  176. Zhang W, Liu Z, Chen G. Dislocation structure in deformed Ti-45% at. Al-10% at. Nb alloy at room temperature. Trans Nonferrous Met Soc China, 1999, S1: 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 92163215, 51731006, 12202201, 52174364, 52101143, 51771093, and 91860104), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20212009 and BK20220918), the Fundamental Research Funds for the Central Universities (Grant Nos. 30922010711 and 30922010202), and Open Project Program of Key Laboratory of China North Engine Research Institute (Grant No. 6142212210103). Yang Chen was supported by Postdoctoral Program of Jiangsu Province

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Chen, Y., Qi, Z. et al. Mechanical behavior of TiAl alloys. Sci. China Technol. Sci. 66, 2457–2480 (2023). https://doi.org/10.1007/s11431-022-2186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2186-9

Keywords

Navigation