Skip to main content
Log in

Distributed accelerated primal-dual neurodynamic approaches for resource allocation problem

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems (RAP) where the objective functions are generally convex. With the help of projection operators, a primal-dual framework, and Nesterov’s accelerated method, we first design a distributed accelerated primal-dual projection neurodynamic approach (DAPDP), and its convergence rate of the primal-dual gap is \(O\left( {{1 \over {{t^2}}}} \right)\) by selecting appropriate parameters and initial values. Then, when the local closed convex sets are convex inequalities which have no closed-form solutions of their projection operators, we further propose a distributed accelerated penalty primal-dual neurodynamic approach (DAPPD) on the strength of the penalty method, primal-dual framework, and Nesterov’s accelerated method. Based on the above analysis, we prove that DAPPD also has a convergence rate \(O\left( {{1 \over {{t^2}}}} \right)\) of the primal-dual gap. Compared with the distributed dynamical approaches based on the classical primal-dual framework, our proposed distributed accelerated neurodynamic approaches have faster convergence rates. Numerical simulations demonstrate that our proposed neurodynamic approaches are feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd S. Distributed optimization and statistical learning via the alternating direction method of multipliers. FNT Machine Learn, 2010, 3: 1–122

    Article  MATH  Google Scholar 

  2. Li C, Dong Z, Chen G, et al. Data-driven planning of electric vehicle charging infrastructure: A case study of Sydney, Australia. IEEE Trans Smart Grid, 2021, 12: 3289–3304

    Article  Google Scholar 

  3. Mateos G, Giannakis G B. Distributed recursive least-squares: Stability and performance analysis. IEEE Trans Signal Process, 2012, 60: 3740–3754

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu C B, Ma Y H, Yin H, et al. Human resource allocation for multiple scientific research projects via improved pigeon-inspired optimization algorithm. Sci China Tech Sci, 2021, 64: 139–147

    Article  Google Scholar 

  5. Fu Z, Yu W W, Lu J H, et al. A distributed normalized Nash equilibrium seeking algorithm for power allocation among micro-grids. Sci China Tech Sci, 2021, 64: 341–352

    Article  Google Scholar 

  6. Chen G, Guo Z. Initialization-free distributed fixed-time convergent algorithms for optimal resource allocation. IEEE Trans Syst Man Cybern Syst, 2022, 52: 845–854

    Article  Google Scholar 

  7. Jia W, Liu N, Qin S. An adaptive continuous-time algorithm for nonsmooth convex resource allocation optimization. IEEE Trans Automat Contr, 2022, 67: 6038–6044

    Article  MathSciNet  MATH  Google Scholar 

  8. Li C, Yu X, Yu W, et al. Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Trans Ind Inf, 2016, 12: 1775–1785

    Article  Google Scholar 

  9. Li C, Yu X, Yu W, et al. Efficient computation for sparse load shifting in demand side management. IEEE Trans Smart Grid, 2017, 8: 250–261

    Article  Google Scholar 

  10. Xu J, He X, Han X, et al. A two-layer distributed algorithm using neurodynamic system for solving L1-minimization. IEEE Trans Circuits Syst II, 2022, 69: 3490–3494

    Google Scholar 

  11. Shi Y, Li L, Yang J, et al. Center-based Transfer Feature Learning With Classifier Adaptation for surface defect recognition. Mech Syst Signal Processing, 2023, 188: 110001

    Article  Google Scholar 

  12. Yalcinoz T, Short M J. Neural networks approach for solving economic dispatch problem with transmission capacity constraints. IEEE Trans Power Syst, 1998, 13: 307–313

    Article  Google Scholar 

  13. Wang G, Bian Q, Xin H, et al. A robust reserve scheduling method considering asymmetrical wind power distribution. IEEE CAA J Autom Sin, 2018, 5: 961–967

    Article  MathSciNet  Google Scholar 

  14. Beck A, Nedic A, Ozdaglar A, et al. An \(O\left( {{1 \over k}} \right)\) gradient method for network resource allocation problems. IEEE Trans Control Netw Syst, 2014, 1: 64–73

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang K, Fu Z, Xu Q, et al. Distributed fixed step-size algorithm for dynamic economic dispatch with power flow limits. Sci China Inf Sci, 2021, 64: 112202

    Article  MathSciNet  Google Scholar 

  16. Yang T, Lu J, Wu D, et al. A distributed algorithm for economic dispatch over time-varying directed networks with delays. IEEE Trans Ind Electron, 2017, 64: 5095–5106

    Article  Google Scholar 

  17. Chen W, Li T. Distributed economic dispatch for energy internet based on multiagent consensus control. IEEE Trans Automat Contr, 2021, 66: 137–152

    Article  MathSciNet  MATH  Google Scholar 

  18. He X, Zhao Y, Huang T. Optimizing the dynamic economic dispatch problem by the distributed consensus-based ADMM approach. IEEE Trans Ind Inf, 2020, 16: 3210–3221

    Article  Google Scholar 

  19. Yu W, Li C, Yu X, et al. Economic power dispatch in smart grids: a framework for distributed optimization and consensus dynamics. Sci China Inf Sci, 2018, 61: 1–16

    Article  Google Scholar 

  20. Yao Y Y, Tian F Z, Mei F, et al. Dynamical economic dispatch using distributed barrier function-based optimization algorithm. Sci China Tech Sci, 2019, 62: 2104–2112

    Article  Google Scholar 

  21. Chen R J, Yang T, Chai T Y. Distributed accelerated optimization algorithms: Insights from an ODE. Sci China Tech Sci, 2020, 63: 1647–1655

    Article  Google Scholar 

  22. Li C, Yu X, Huang T, et al. Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch. IEEE Trans Neural Netw Learn Syst, 2018, 29: 2407–2418

    Article  Google Scholar 

  23. He X, Ho D W C, Huang T, et al. Second-order continuous-time algorithms for economic power dispatch in smart grids. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1482–1492

    Article  Google Scholar 

  24. Deng Z, Liang S, Yu W. Distributed optimal resource allocation of second-order multiagent systems. Int J Robust Nonlinear Control, 2018, 28: 4246–4260

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang D, Wang Z, Wen C, et al. Second-order continuous-time algorithm for optimal resource allocation in power systems. IEEE Trans Ind Inf, 2019, 15: 626–637

    Article  Google Scholar 

  26. Zeng X, Yi P, Hong Y, et al. Distributed continuous-time algorithms for nonsmooth extended monotropic optimization problems. SIAM J Control Optim, 2018, 56: 3973–3993

    Article  MathSciNet  MATH  Google Scholar 

  27. Le X, Chen S, Li F, et al. Distributed neurodynamic optimization for energy internet management. IEEE Trans Syst Man Cybern Syst, 2019, 49: 1624–1633

    Article  Google Scholar 

  28. Li K, Liu Q, Yang S, et al. Cooperative optimization of dual multiagent system for optimal resource allocation. IEEE Trans Syst Man Cybern Syst, 2020, 50: 4676–4687

    Article  Google Scholar 

  29. Liang S, Zeng X, Chen G, et al. Distributed sub-optimal resource allocation via a projected form of singular perturbation. Automatica, 2020, 121: 109180

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu Y, Luo D, Duan H, Distributed planar formation maneuvering of leader-follower networked systems via a barycentric coordinate-based approach.

  31. Pei Y Q, Gu H B, Liu K X, et al. An overview on the designs of distributed observers in LTI multi-agent systems. Sci China Tech Sci, 2021, 64: 2337–2346

    Article  Google Scholar 

  32. Huang C D, Cao J D. Comparative study on bifurcation control methods in a fractional-order delayed predator-prey system. Sci China Tech Sci, 2019, 62: 298–307

    Article  Google Scholar 

  33. Pshenichnyi B N. One method of solving the convex programming problem. Cybernetics, 1981, 16: 510–520

    Article  MathSciNet  MATH  Google Scholar 

  34. Nesterov Y. Introductory Lectures on Convex Optimization: A Basic Course. New York: Springer Science & Business Media, 2003

    MATH  Google Scholar 

  35. Su W, Boyd S, Candes E. A differential equation for modeling Nesterov’s accelerated gradient method: Theory and insights. Adv Neural Inf Process Syst, 2014, 27: 2510–2518

    MATH  Google Scholar 

  36. Wibisono A, Wilson A C, Jordan M I. A variational perspective on accelerated methods in optimization. Proc Natl Acad Sci USA, 2016, 113: E7351–E7358

    Article  MathSciNet  MATH  Google Scholar 

  37. Kolarijani A S, Esfahani P M, Keviczky T. Continuous-time accelerated methods via a hybrid control lens. IEEE Trans Automat Contr, 2020, 65: 3425–3440

    Article  MathSciNet  MATH  Google Scholar 

  38. Attouch H, Chbani Z, Peypouquet J, et al. Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math Program, 2018, 168: 123–175

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeng X, Lei J, Chen J. Dynamical primal-dual nesterov accelerated method and its application to network optimization. IEEE Trans Automat Contr, 2023, 68: 1760–1767

    Article  MathSciNet  MATH  Google Scholar 

  40. Jiang X, Qin S, Xue X, et al. A second-order accelerated neurodynamic approach for distributed convex optimization. Neural Networks, 2022, 146: 161–173

    Article  MATH  Google Scholar 

  41. Boţ R I, Csetnek E R. Second order forward-backward dynamical systems for monotone inclusion problems. SIAM J Control Optim, 2016, 54: 1423–1443

    Article  MathSciNet  MATH  Google Scholar 

  42. He X, Hu R, Fang Y P. Convergence rates of inertial primal-dual dynamical methods for separable convex optimization problems. SIAM J Control Optim, 2021, 59: 3278–3301

    Article  MathSciNet  MATH  Google Scholar 

  43. Boţ R I, Nguyen D K. Improved convergence rates and trajectory convergence for primal-dual dynamical systems with vanishing damping. J Differ Equ, 2021, 303: 369–406

    Article  MathSciNet  MATH  Google Scholar 

  44. Parikh N. Proximal algorithms. FNT Optim, 2014, 1: 127–239

    Article  Google Scholar 

  45. Zhao Y, Liao X, He X, et al. Centralized and collective neurodynamic optimization approaches for sparse signal reconstruction via L1-minimization. IEEE Trans Neural Netw Learn Syst, 2022, 33: 7488–7501

    Article  MathSciNet  Google Scholar 

  46. Kia S S. Distributed optimal resource allocation over networked systems and use of an e-exact penalty function. IFAC-PapersOnLine, 2016, 49: 13–18

    Article  MathSciNet  Google Scholar 

  47. Pinar M Ç, Zenios S A. On smoothing exact penalty functions for convex constrained optimization. SIAM J Optim, 1994, 4: 486–511

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing He.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 62176218), and the Fundamental Research Funds for the Central Universities (Grant No. XDJK2020TY003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., He, X., Yu, J. et al. Distributed accelerated primal-dual neurodynamic approaches for resource allocation problem. Sci. China Technol. Sci. 66, 3639–3650 (2023). https://doi.org/10.1007/s11431-022-2161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2161-4

Navigation