Skip to main content
Log in

Robust nanoporous Cu/TiO2 ceramic filter membrane with promoted bactericidal function

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Filter membrane technology has been extensively used for water purification. However, due to their high brittleness and biological fouling, filter membranes will gradually deteriorate. Here we develop a robust Cu/TiO2 ceramic filter membrane for water treatment, which has excellent inherent antibacterial activities both in the dark and under visible light irradiation. One-dimensional nanobelt TiO2 can be sintered into a nanoporous membrane structure by overlapping and interweaving with each other, thereby achieving high flux simultaneously and solving the problem of high brittleness of inorganic ceramics. Meanwhile, such one-dimensional TiO2 nanostructures can provide more deposition sites for Cu nanoparticles with inherent antibacterial activity in the dark. To realise the surface plasmon resonance-enhanced antibacterial activity under visible light, Cu/TiO2 heterostructures are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee A, Elam J W, Darling S B. Membrane materials for water purification: Design, development, and application. Environ Sci-Water Res Technol, 2016, 2: 17–42

    Article  Google Scholar 

  2. Zoubeik M, Ismail M, Salama A, et al. New developments in membrane technologies used in the treatment of produced water: A review. Arab J Sci Eng, 2018, 43: 2093–2118

    Article  Google Scholar 

  3. Athanasiou D A, Romanos G E, Falaras P. Design and optimization of a photocatalytic reactor for water purification combining optical fiber and membrane technologies. Chem Eng J, 2016, 305: 92–103

    Article  Google Scholar 

  4. Fuwad A, Ryu H, Malmstadt N, et al. Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination, 2019, 458: 97–115

    Article  Google Scholar 

  5. Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades. Nature, 2008, 452: 301–310

    Article  Google Scholar 

  6. Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment. Science, 2011, 333: 712–717

    Article  Google Scholar 

  7. Pendergast M T M, Hoek E M V. A review of water treatment membrane nanotechnologies. Energy Environ Sci, 2011, 4: 1946–1971

    Article  Google Scholar 

  8. Qasim M, Darwish N N, Mhiyo S, et al. The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 2018, 443: 143–164

    Article  Google Scholar 

  9. Meng F, Zhang S, Oh Y, et al. Fouling in membrane bioreactors: An updated review. Water Res, 2017, 114: 151–180

    Article  Google Scholar 

  10. Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem Soc Rev, 2016, 45: 5888–5924

    Article  Google Scholar 

  11. Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat Rev Mater, 2016, 1: 1–5

    Article  Google Scholar 

  12. Conejo J, Nueesch R, Vonderheide M, et al. Clinical performance of all-ceramic dental restorations. Curr Oral Health Rep, 2017, 4: 112–123

    Article  Google Scholar 

  13. Liu J W, Liang H W, Yu S H. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem Rev, 2012, 112: 4770–4799

    Article  Google Scholar 

  14. Dong W, Cogbill A, Zhang T, et al. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. J Phys Chem B, 2006, 110: 16819–16822

    Article  Google Scholar 

  15. Ji Y, Yang R, Wang L, et al. Visible light active and noble metal free Nb4N5/TiO2 nanobelt surface heterostructure for plasmonic enhanced solar water splitting. Chem Eng J, 2020, 402: 126226

    Article  Google Scholar 

  16. Yang R, Song G, Wang L, et al. Full solar-spectrum-driven antibacterial therapy over hierarchical Sn3O4/PDINH with enhanced photocatalytic activity. Small, 2021, 17: 2102744

    Article  Google Scholar 

  17. Wang L, Zhang X, Yu X, et al. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv Mater, 2019, 31: 1901965

    Article  Google Scholar 

  18. Zou D, Chen X, Drioli E, et al. Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. J Membrane Sci, 2020, 593: 117402

    Article  Google Scholar 

  19. Hou X, Ma H, Liu F, et al. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance. J Hazard Mater, 2015, 299: 59–66

    Article  Google Scholar 

  20. Li J, Yin Y, Liu E, et al. In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J Hazard Mater, 2017, 321: 183–192

    Article  Google Scholar 

  21. Zhang C, Li Y, Shuai D, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere, 2019, 214: 462–479

    Article  Google Scholar 

  22. Wang R, He X, Gao Y, et al. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants. Mater Sci Eng-C, 2017, 75: 7–15

    Article  Google Scholar 

  23. Wen Q, Di J, Zhao Y, et al. Flexible inorganic nanofibrous membranes with hierarchical porosity for efficient water purification. Chem Sci, 2013, 4: 4378–4382

    Article  Google Scholar 

  24. Yu L, Ruan S, Xu X, et al. One-dimensional nanomaterial-assembled macroscopic membranes for water treatment. Nano Today, 2017, 17: 79–95

    Article  Google Scholar 

  25. Ireland J C, Klostermann P, Rice E W, et al. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol, 1993, 59: 1668–1670

    Article  Google Scholar 

  26. Yamaguchi M, Abe H, Ma T, et al. Bactericidal activity of TiO2 nanotube thin films on Si by photocatalytic generation of active oxygen species. Langmuir, 2020, 36: 12668–12677

    Article  Google Scholar 

  27. Prakash J, Sun S, Swart H C, et al. Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Appl Mater Today, 2018, 11: 82–135

    Article  Google Scholar 

  28. Quaranta D, Krans T, Espírito Santo C, et al. Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol, 2011, 77: 416–426

    Article  Google Scholar 

  29. Vincent M, Duval R E, Hartemann P, et al. Contact killing and antimicrobial properties of copper. J Appl Microbiol, 2018, 124: 1032–1046

    Article  Google Scholar 

  30. Yadav L, Tripathi R M, Prasad R, et al. Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng, 2017, 9: 9–14

    Article  Google Scholar 

  31. Dollwet H H A, Sorenson J R J. Historic uses of copper compounds in medicine. In: Trace Elements in Medicine. 2nd ed. Arkansas: The Humana Press Inc., 2001. 80–87

    Google Scholar 

  32. Lemire J A, Harrison J J, Turner R J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat Rev Microbiol, 2013, 11: 371–384

    Article  Google Scholar 

  33. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol, 2011, 77: 1541–1547

    Article  Google Scholar 

  34. Qiu X, Miyauchi M, Sunada K, et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano, 2012, 6: 1609–1618

    Article  Google Scholar 

  35. Lv Y, Cao X, Jiang H, et al. Rapid photocatalytic debromination on TiO2 with in-situ formed copper co-catalyst: Enhanced adsorption and visible light activity. Appl Catal B-Environ, 2016, 194: 150–156

    Article  Google Scholar 

  36. Rtimi S, Pulgarin C, Kiwi J. Recent developments in accelerated antibacterial inactivation on 2D Cu-titania surfaces under indoor visible light. Coatings, 2017, 7: 20

    Article  Google Scholar 

  37. Guo M Y, Liu F, Leung Y H, et al. Annealing-induced antibacterial activity in TiO2 under ambient light. J Phys Chem C, 2017, 121: 24060–24068

    Article  Google Scholar 

  38. Jiang T, Jia C, Zhang L, et al. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale, 2015, 7: 209–217

    Article  Google Scholar 

  39. Zhang L, Jia C, He S, et al. Hot hole enhanced synergistic catalytic oxidation on Pt-Cu alloy clusters. Adv Sci, 2017, 4: 1600448

    Article  Google Scholar 

  40. Jia Q, Zhao D, Tang B, et al. Synergistic catalysis of Au-Cu/TiO2-NB nanopaper in aerobic oxidation of benzyl alcohol. J Mater Chem A, 2014, 2: 16292–16298

    Article  Google Scholar 

  41. Marimuthu A, Zhang J, Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science, 2013, 339: 1590–1593

    Article  Google Scholar 

  42. Zhang S, Peng B, Yang S, et al. Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light. Int J Hydrogen Energy, 2015, 40: 303–310

    Article  Google Scholar 

  43. Chan G H, Zhao J, Hicks E M, et al. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett, 2007, 7: 1947–1952

    Article  Google Scholar 

  44. Park Y S, Chae H K. Geometric control and intense plasmon resonances of colloidal truncated triangular copper nanoplates in non-ionic microemulsions containing tetrabutylammonium hydroxide. Chem Mater, 2010, 22: 6280–6290

    Article  Google Scholar 

  45. Zhou W, Du G, Hu P, et al. Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance. J Mater Chem, 2011, 21: 7937–7945

    Article  Google Scholar 

  46. Hans M, Erbe A, Mathews S, et al. Role of copper oxides in contact killing of bacteria. Langmuir, 2013, 29: 16160–16166

    Article  Google Scholar 

  47. He W, Kim H K, Wamer W G, et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc, 2014, 136: 750–757

    Article  Google Scholar 

  48. Liu Z, Liu X, Du Y, et al. Using plasmonic copper sulfide nanocrystals as smart light-driven sterilants. ACS Nano, 2015, 9: 10335–10346

    Article  Google Scholar 

  49. Wang S, Riedinger A, Li H, et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano, 2015, 9: 1788–1800

    Article  Google Scholar 

  50. Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6: 5164–5173

    Article  Google Scholar 

  51. Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology. Nat Nanotech, 2015, 10: 25–34

    Article  Google Scholar 

  52. Fasciani C, Silvero M J, Anghel M A, et al. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability. J Am Chem Soc, 2014, 136: 17394–17397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoHong Xu or ChuanCheng Jia.

Additional information

Supporting Information

The supporting information is available online at tech.scichina.com and link.springerlink.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22173050, 21977064 and 51732007), the National Key Research and Development Program of China (Grant No. 2021YFA1200102), the Science Fund for Distinguished Young Scholars of Shandong Province (Grant No. ZR2019JQ16), Beijing National Laboratory for Molecular Sciences (Grant No. BNLMS202105) and the Fundamental Research Funds for the Central Universities (Grant No. 63223056).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Shi, C., Xu, X. et al. Robust nanoporous Cu/TiO2 ceramic filter membrane with promoted bactericidal function. Sci. China Technol. Sci. 65, 2687–2694 (2022). https://doi.org/10.1007/s11431-022-2151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2151-0

Navigation