Skip to main content
Log in

Atomistic simulations of martensitic transformation processes for metastable FeMnCoCr high-entropy alloy

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Non-equiatomic FeMnCoCr high-entropy alloy (HEA), which exhibits a great potential to break the strength-ductility trade-off relationship, has drawn abundant attention from researchers in experiments. However, atomic simulations of such excellent alloys are limited due to the lack of proper interatomic potentials. In this work, the complete martensitic transformation of non-equiatomic HEA is reproduced via atomic simulations with a novel interatomic potential under EAM framework. The physical parameters of interatomic potential agree well with experimental measurements and first-principles calculations. According to the atomic simulation results of poly-crystalline under tension and compression, two basic transition models of TRIP-DP-HEA for martensitic transformation are revealed, i.e., the overlapping of intrinsic stacking faults or the growth of hcp laminates simultaneously. Moreover, the pathway for martensitic transformation is elucidated with the gliding of Shockley partial dislocations of 1/6 ❬112❭ burgers vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  Google Scholar 

  2. Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater, 2013, 61: 2628–2638

    Article  Google Scholar 

  3. Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    Article  Google Scholar 

  4. He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater, 2014, 62: 105–113

    Article  Google Scholar 

  5. Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511

    Article  Google Scholar 

  6. Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016, 534: 227–230

    Article  Google Scholar 

  7. Li Z, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater, 2017, 131: 323–335

    Article  Google Scholar 

  8. Li Z, Raabe D. Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Mater Chem Phys, 2018, 210: 29–36

    Article  Google Scholar 

  9. Niendorf T, Wegener T, Li Z, et al. Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scripta Mater, 2018, 143: 63–67

    Article  Google Scholar 

  10. Guo S, Chen H, Wang M. Research on the dislocation differences of CoCrFeMnNi with different local chemical orders during room temperature tensile test. J Alloys Compd, 2021, 868: 159215

    Article  Google Scholar 

  11. Cui Y, Toku Y, Kimura Y, et al. High-strain-rate void growth in high entropy alloys: Suppressed dislocation emission = suppressed void growth. Scripta Mater, 2020, 185: 12–18

    Article  Google Scholar 

  12. Mohammadzadeh R, Mohammadzadeh M. Inverse grain size effect on twinning in nanocrystalline TWIP steel. Mater Sci Eng-A, 2019, 747: 265–275

    Article  Google Scholar 

  13. Meyer R, Entel P. Martensite-austenite transition and phonon dispersion curves of Fe1−xNix studied by molecular-dynamics simulations. Phys Rev B, 1998, 57: 5140

    Article  Google Scholar 

  14. Sak-Saracino E, Urbassek H M. Temperature-induced phase transformation of Fe1−xNix alloys: Molecular-dynamics approach. Eur Phys J B, 2015, 88: 169

    Article  Google Scholar 

  15. Holm A, Mayr S G. Thermal and structural properties of the martensitic transformations in Fe7Pd3 shape memory alloys: An ab initio-based molecular dynamics study. New J Phys, 2019, 21: 063007

    Article  Google Scholar 

  16. Choi W M, Jo Y H, Sohn S S, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study. npj Comput Mater, 2018, 4: 1

    Article  Google Scholar 

  17. Zhang H F, Yan H L, Fang F, et al. Orientation-dependent mechanical responses and plastic deformation mechanisms of FeMnCoCrNi high-entropy alloy: A molecular dynamics study. Acta Metall Sin (Engl Lett), 2021, 34: 1511–1526

    Article  Google Scholar 

  18. Wang P, Xu S, Liu J, et al. Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights. J Mech Phys Solids, 2017, 98: 290–308

    Article  Google Scholar 

  19. Liu S, Wei Y. The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Extreme Mech Lett, 2017, 11: 84–88

    Article  Google Scholar 

  20. Wang P, Wang H. Meta-atom molecular dynamics for studying material property dependent deformation mechanisms of alloys. J Appl Mech, 2017, 84: 111002

    Article  Google Scholar 

  21. Wang P, Wu Y, Liu J, et al. Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys. Extreme Mech Lett, 2017, 17: 38–42

    Article  Google Scholar 

  22. Mohammadzadeh R. Reversible deformation in nanocrystalline TWIP steel during cyclic loading by partial slip reversal and detwinning. Mater Sci Eng-A, 2020, 782: 139251

    Article  Google Scholar 

  23. Wang P, Bu Y, Liu J, et al. Atomic deformation mechanism and interface toughening in metastable high entropy alloy. Mater Today, 2020, 37: 64–73

    Article  Google Scholar 

  24. Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 2019, 574: 223–227

    Article  Google Scholar 

  25. Li Z. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Mater, 2019, 164: 400–412

    Article  Google Scholar 

  26. Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys Rev B, 2000, 61: 7877–7882

    Article  Google Scholar 

  27. Giannozzi P, Baroni S, Bonini N, et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J Phys-Condens Matter, 2009, 21: 395502

    Article  Google Scholar 

  28. Rappe A M, Rabe K M, Kaxiras E, et al. Optimized pseudopotentials. Phys Rev B, 1990, 41: 1227–1230

    Article  Google Scholar 

  29. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  Google Scholar 

  30. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  MATH  Google Scholar 

  31. Evans D J, Holian B L. The Nose-Hoover thermostat. J Chem Phys, 1985, 83: 4069–4074

    Article  Google Scholar 

  32. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng, 2009, 18: 015012

    Article  Google Scholar 

  33. Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci, 1994, 2: 279–286

    Article  Google Scholar 

  34. Bu Y, Li Z, Liu J, et al. Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase. Phys Rev Lett, 2019, 122: 075502

    Article  Google Scholar 

  35. Medvedeva N I, Park M S, Van Aken D C, et al. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J Alloys Compd, 2014, 582: 475–482

    Article  Google Scholar 

  36. Fang Q, Chen Y, Li J, et al. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. Int J Plast, 2019, 114: 161–173

    Article  Google Scholar 

  37. Mizuno M, Sugita K, Araki H. Defect energetics for diffusion in CrMnFeCoNi high-entropy alloy from first-principles calculations. Comput Mater Sci, 2019, 170: 109163

    Article  Google Scholar 

  38. Aguilar-Hurtado J Y, Vargas-Uscategui A, Paredes-Gil K, et al. Boron addition in a non-equiatomic Fe50Mn30Co10Cr10 alloy manufactured by laser cladding: Microstructure and wear abrasive resistance. Appl Surf Sci, 2020, 515: 146084

    Article  Google Scholar 

  39. Bain E C, Dunkirk N Y. The nature of martensite. Trans AIME, 1924, 70: 25–47

    Google Scholar 

  40. Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast, 2000, 16: 1391–1409

    Article  MATH  Google Scholar 

  41. Wang Y, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction. Acta Mater, 2018, 154: 79–89

    Article  Google Scholar 

  42. Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater, 2010, 58: 5129–5141

    Article  Google Scholar 

  43. Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A, 1952, 65: 349–354

    Article  Google Scholar 

  44. Landau L D, Lifshits E M. Course of Theorical Physics: Theory of Elasticity. Oxford: Pergamon Press, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wang or QianQian Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11902185, 51702207, and 11972219), the Shanghai Sailing Program (Grant No. 19YF1415100), the Young Elite Scientist Sponsorship Program by CAST (Grant No. 2019QNRC001), the Key Research Project of Zhejiang Laboratory, and the Program for Professor of Special Appointment (Young Eastern Scholar Program) at Shanghai Institutions of Higher Learning.

Supporting Information

The supporting information is available online at https://tech.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Online Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Lin, Y., Cao, Y. et al. Atomistic simulations of martensitic transformation processes for metastable FeMnCoCr high-entropy alloy. Sci. China Technol. Sci. 66, 998–1006 (2023). https://doi.org/10.1007/s11431-022-2146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2146-9

Keywords

Navigation