Skip to main content
Log in

Aquatic unmanned aerial vehicles (AquaUAV): Bionic prototypes, key technologies, analysis methods, and potential solutions

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Some research on aircraft is largely inspired by birds. Among them, aerial-aquatic amphibians with trans-media locomotion capabilities have greatly promoted the development of aquatic unmanned aerial vehicles (AquaUAV). In this article, the studies of AquaUAV are sorted out by their biological counterpart and summarized in chronological order from 2005 to 2021. To further understand the key technologies of AquaUAV, we focus on the structural compatibility design of wing and aerial-aquatic propulsion methods by analyzing their advantages and disadvantages. In addition, the analysis methods of kinematics and dynamics performance of AquaUAV for simulation and experiment are involved in the process of studying the kinematics, lift/drag, and propulsion of prototypes. Finally, we present several challenges and propose some potential solutions to improve the ability of AquaUAV in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Müller R, Abaid N, Boreyko J B, et al. Biodiversifying bioinspiration. Bioinspir Biomim, 2018, 13: 053001

    Article  Google Scholar 

  2. Raspet A. Biophysics of bird flight. Science, 1960, 132: 191–200

    Article  Google Scholar 

  3. Ajanic E, Feroskhan M, Mintchev S, et al. Bioinspired wing and tail morphing extends drone flight capabilities. Sci Robot, 2020, 5: eabc2897

    Article  Google Scholar 

  4. Zhang H, Lerner E, Cheng B, et al. Compliant bistable grippers enable passive perching for micro aerial vehicles. IEEE/ASME Trans Mech, 2020, 26: 2316–2326

    Article  Google Scholar 

  5. Lees J, Gardiner J, Usherwood J, et al. Locomotor preferences in terrestrial vertebrates: An online crowdsourcing approach to data collection. Sci Rep, 2016, 6: 28825

    Article  Google Scholar 

  6. Park T, Cha Y. Soft mobile robot inspired by animal-like running motion. Sci Rep, 2019, 9: 14700

    Article  Google Scholar 

  7. Zhang Z Q, Yang Q, Zhao J, et al. Kinematic synthesis method for the one-degree-of-freedom jumping leg mechanism of a locust-inspired robot. Sci China Tech Sci, 2020, 63: 472–487

    Article  Google Scholar 

  8. Wang T, Pei X, Hou T, et al. An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance. Front Inform Technol Electron Eng, 2020, 21: 723–739

    Article  Google Scholar 

  9. Chang M H, Kim D H, Kim S H, et al. Anthropomorphic prosthetic hand inspired by efficient swing mechanics for sports activities. IEEE ASME Trans Mechatron, 2022, 27: 1196–1207

    Article  Google Scholar 

  10. Gray J. Muscular movements of fishes. Nature, 1933, 131: 825–828

    Article  Google Scholar 

  11. Vogel S. Squirt smugly, scallop! Nature, 1997, 385: 21–22

    Article  Google Scholar 

  12. Zhu J, White C, Wainwright D K, et al. Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes. Sci Robot, 2019, 4: eaax4615

    Article  Google Scholar 

  13. Wu Z, Yu J, Yuan J, et al. Towards a gliding robotic dolphin: Design, modeling, and experiments. IEEE ASME Trans Mechatron, 2019, 24: 260–270

    Article  Google Scholar 

  14. Lock R J, Burgess S C, Vaidyanathan R. Multi-modal locomotion: From animal to application. Bioinspir Biomim, 2013, 9: 011001

    Article  Google Scholar 

  15. Yang X, Wang T, Liang J, et al. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV). Prog Aerospace Sci, 2015, 74: 131–151

    Article  Google Scholar 

  16. Peftiev V. Vpk belarusi na poroge. Vestn Vozdushnogo Flota, 1999, 28: 26

    Google Scholar 

  17. Shao D. Analysis to the power system of trans-media vehicle. J Aerospace Power, 2020, 1: 12–15

    Google Scholar 

  18. Feng J, Hu J, Qi D. Study on development needs and key technologies of air-water trans-media vehicle. J Air Force Eng Univ, 2019, 20: 8–13

    Google Scholar 

  19. Liu A, Feng J F, Liao B Q, et al. Progress and key technologies of multi-rotor unmanned aerial underwater vehicle. Ship Sci Technol, 2017, 393: 1–6

    Google Scholar 

  20. Zhu X, Jin X, Tao C, et al. Discussion on development of ocean exploration technologies and equipments. Robot, 2013, 35: 376–384

    Article  Google Scholar 

  21. Dai Y, Liu S. Researches on deep ocean mining robots: Status and development. Robot, 2013, 35: 363

    Article  Google Scholar 

  22. Erbil M A, Prior S D, Karamanoglu M, et al. Reconfigurable unmanned aerial vehicles. In: Proceedings of the International Conference on Manufacturing and Engineering Systems. Yunlin, 2009. 392–396

  23. Weisshaar T A. Morphing aircraft systems: Historical perspectives and future challenges. J Aircraft, 2013, 50: 337–353

    Article  Google Scholar 

  24. Huang J, Gong X, Wang Z, et al. The kinematics analysis of webbed feet during cormorants’ swimming. In: Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, 2016. 301–306

  25. Huang J, Li J, Chen H, et al. Design and cfd based simulation analysis of a biotic webbed feet propulsion mechanism for hydroplaning. In: Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur, 2019. 83–87

  26. Pengelley R. All hands on deck: The sky’s the limit for shipboard UAVs. Jane’s Navy Int, 2009, 12–17

  27. Macy D, Eubank R, Atkins E, et al. Flying fish: A persistent ocean surveillance buoy with autonomous aerial repositioning. In: Proceedings of the AUVSI Conference. San Diego, 2008

  28. Eubank R, Atkins E. Unattended autonomous mission and system management of an unmanned seaplane. In: Proceedings of the Infotech@Aerospace 2011, St. Louis, 2011

  29. Eubank R D. Autonomous flight, fault, and energy management of the flying fish solar-powered seaplane. Dissertation for Doctoral Degree. Michigan: University of Michigan, 2012

    Google Scholar 

  30. Eubank R D, Bradley J M, Atkins E M. Energy-aware multiflight planning for an unattended seaplane: Flying fish. J Aerospace Inf Syst, 2017, 14: 73–91

    Article  Google Scholar 

  31. Liu H. Investigation on the mechanism of a bionic trans-media vehicle and prototype project. Dissertation for Bachelor Degree. Beijing: Beihang University, 2009

    Google Scholar 

  32. Gao A, Techet A H. Design considerations for a robotic flying fish, In: Proceedings of the OCEANS’11 MTS/IEEE KONA. Waikoloa, 2011. 1–8

  33. Lussier Desbiens A, Pope M T, Christensen D L, et al. Design principles for efficient, repeated jumpgliding. Bioinspir Biomim, 2014, 9: 025009

    Article  Google Scholar 

  34. Desbiens A L, Pope M, Berg F, et al. Efficient jumpgliding: Theory and design considerations. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, 2013. 4451–4458

  35. Marks P. Robot takes to the air on the wings of a fish. New Sci, 2013, 218: 2916

    Google Scholar 

  36. Mathaiyan V, Murugesan R, Madasamy S K, et al. Conceptual design and numerical analysis of an unmanned amphibious vehicle. In: Proceedings of the AIAA Scitech 2021 Forum. 2021. 1285

  37. Lock R J, Vaidyanathan R, Burgess S C, et al. Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles through empirical and numerical modelling of the common guillemot, Uria aalge. Bioinspir Biomim, 2010, 5: 046001

    Article  Google Scholar 

  38. Lock R J. A biologically-inspired multi-modal wing for aerial-aquatic robotic vehicles. Dissertation for Doctoral Degree. Bristol: University of Bristol, 2011

    Google Scholar 

  39. Lock R J, Vaidyanathan R, Burgess S C. Design and experimental verification of a biologically inspired multi-modal wing for aerial-aquatic robotic vehicles. In: Proceedings of the 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Rome, 2021. 681–687

  40. Lock R J, Vaidyanathan R, Burgess S C. Impact of marine locomotion constraints on a bio-inspired aerial-aquatic wing: Experimental performance verification. J Mech Robotics, 2014, 6: 011001

    Article  Google Scholar 

  41. Izraelevitz J S, Triantafyllou M S. A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, 2015. 5830–5837

  42. Ramamurti R, Geder J D, Edwards D, et al. Computational studies for the development of a hybrid UAV/UUV. In: Proceedings of the 33rd AIAA Applied Aerodynamics Conference. Dallas, 2015. 2414

  43. Stewart W, Weisler W, MacLeod M, et al. Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system. Bioinspir Biomim, 2018, 13: 056013

    Article  Google Scholar 

  44. Fabian A, Feng Y, Swartz E, et al. Hybrid aerial underwater vehicle. MIT Lincoln Lab, Lexington, 2012

  45. Yang X, Wang T, Liang J, et al. Numerical analysis of biomimetic gannet impacting with water during plunge-diving, In: Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guangzhou, 2012. 569–574

  46. Wang T M, Yang X B, Liang J H, et al. CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving. Bioinspir Biomim, 2013, 8: 036006

    Article  Google Scholar 

  47. Yang X, Liang J, Li Y, et al. Modeling and analysis of variable buoyancy device imitating waterfowl plumage structure. In: Proceedings of The Twenty-first International Offshore and Polar Engineering Conference. Maui, 2011. 230–234

  48. Liang J, Yang X, Wang T, et al. Design and experiment of a bionic gannet for plunge-diving. J Bionic Eng, 2013, 10: 282–291

    Article  Google Scholar 

  49. Liang J H, Yao G C, Wang T M, et al. Wing load investigation of the plunge-diving locomotion of a gannet Morus inspired submersible aircraft. Sci China Tech Sci, 2014, 57: 390–402

    Article  Google Scholar 

  50. Yang X, Wang T, Liang J, et al. Submersible unmanned aerial vehicle concept design study. In: Proceedings of the 2013 Aviation Technology, Integration, and Operations Conference. Los Angeles, 2013. 4422

  51. Yang X, Liang J, Wang T, et al. Computational simulation of a submersible unmanned aerial vehicle impacting with water. In: Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, 2013. 1138–1143

  52. Siddall R, Kovac M. Fast aquatic escape with a jet thruster. IEEE/ASME Trans Mech, 2016, 221: 217–226

    Google Scholar 

  53. Siddall R, Ortega Ancel A, Kovac M. Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus, 2017, 7: 20160085

    Article  Google Scholar 

  54. Armanini S F, Siddall R, Kovac M. Modelling and simulation of a bioinspired aquatic micro aerial vehicle. In: Proceedings of the AIAA Aviation 2019 Forum. San Diego, 2019. 3115

  55. Guo D, Bacciaglia A, Simpson M, et al. Design and development a bimodal unmanned system. In: Proceedings of the AIAA Scitech 2019 Forum. Dallas, 2019, 2096

  56. Pena I, Billingsley E, Zimmerman S, et al. Comprehensive sizing process, actuation mechanism selection, and development of gannet-inspired amphibious drones. In: Proceedings of the AIAA Aviation 2020 forum. 2020, 2764

  57. Siddall R, Kovac M. A water jet thruster for an aquatic micro air vehicle. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, 2015. 3979–3985

  58. Zufferey R, Ancel A O, Farinha A, et al. Consecutive aquatic jump-gliding with water-reactive fuel. Sci Robot, 2019, 4: eaax7330

    Article  Google Scholar 

  59. Hou T, Yang X, Su H, et al. Design and experiments of a squid-like aquatic-aerial vehicle with soft morphing fins and arms. In: Proceedings of the 2019 International Conference on Robotics and Automation (ICRA). Montreal, 2019. 4681–4687

  60. Hou T, Yang X, Su H, et al. Design, fabrication and morphing mechanism of soft fins and arms of a squid-like aquatic-aerial vehicle with morphology tradeoff. In: Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dali, 2019. 1020–1026

  61. Tan Y H, Siddall R, Kovac M. Efficient aerial-aquatic locomotion with a single propulsion system. IEEE Robot Autom Lett, 2017, 2: 1304–1311

    Article  Google Scholar 

  62. Chen Y, Helbling E F, Gravish N, et al. Hybrid aerial and aquatic locomotion in an at-scale robotic insect. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, 2015. 331–338

  63. Chen Y, Wang H, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot, 2017, 2: eaao5619

    Article  Google Scholar 

  64. Shealer D. Foraging behaviour and food of seabirds. Biology Marine Birds, 2002, 14: 137–178

    Google Scholar 

  65. Laschi C, Cianchetti M. Soft robotics: New perspectives for robot bodyware and control. Front Bioeng Biotechnol, 2014, 2: 3

    Article  Google Scholar 

  66. Cheng N G, Lobovsky M B, Keating S J, et al. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation. Saint Paul, 2012. 4328–4333

  67. Chao W. Dynamics control of cable-driven silicone soft manipulator. Dissertation for Master’s Degree. Shanghai: Shanghai Jiao Tong University, 2015

    Google Scholar 

  68. Kim S, Laschi C, Trimmer B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol, 2013, 31: 287–294

    Article  Google Scholar 

  69. Kim J S, Lee J Y, Lee K T, et al. Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton composite. J Mech Sci Technol, 2013, 27: 3123–3129

    Article  Google Scholar 

  70. Jin H, Dong E, Mao S, et al. Locomotion modeling of an actinomorphic soft robot actuated by SMA springs. In: Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Bali, 2014. 21–26

  71. Nakabo Y, Mukai T, and Asaka K. Biomimetic soft robots using ipmc. In: Electroactive Polymers for Robotic Applications. London: Springer, 2007. 165–198

    Chapter  Google Scholar 

  72. Stoimenov B L, Rossiter J, Mukai T. Soft ionic polymer metal composite (IPMC) robot swimming in viscous fluid. In: Proceedings of the Electroactive Polymer Actuators and Devices (EAPAD) 2009. International Society for Optics and Photonics, 2009. 7287: 72872B

  73. Kempaiah R, Nie Z. From nature to synthetic systems: Shape transformation in soft materials. J Mater Chem B, 2014, 2: 2357–2368

    Article  Google Scholar 

  74. Cianchetti M, Calisti M, Margheri L, et al. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Bioinspir Biomim, 2015, 10: 035003

    Article  Google Scholar 

  75. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475

    Article  Google Scholar 

  76. Roche E T, Horvath M A, Wamala I, et al. Soft robotic sleeve supports heart function. Sci Transl Med, 2017, 9: eaaf3925.

    Article  Google Scholar 

  77. Tang W, Zhang C, Zhong Y, et al. Customizing a self-healing soft pump for robot. Nat Commun, 2021, 12: 2247

    Article  Google Scholar 

  78. Tolley M T, Shepherd R F, Karpelson M, et al. An untethered jumping soft robot. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014. 561–566

  79. Li G, Chen X, Zhou F, et al. Self-powered soft robot in the Mariana Trench. Nature, 2021, 591: 66–71

    Article  Google Scholar 

  80. Calisti M, Picardi G, Laschi C. Fundamentals of soft robot locomotion. J R Soc Interface, 2017, 14: 20170101

    Article  Google Scholar 

  81. Hou T, Yang X, Aiyama Y, et al. Design and experiment of a universal two-fingered hand with soft fingertips based on jamming effect. Mechanism Machine Theor, 2019, 133: 706–719

    Article  Google Scholar 

  82. Mahadevan L, Rica S. Self-organized origami. Science, 2005, 307: 1740

    Article  Google Scholar 

  83. Rus D, Tolley M T. Design, fabrication and control of origami robots. Nat Rev Mater, 2018, 3: 101–112

    Article  Google Scholar 

  84. Lipson H, Kurman M. Fabricated: The New World of 3D Printing. Weinheim: John Wiley & Sons, 2013

    Google Scholar 

  85. Li Y J, Zhang F H, Liu Y J, et al. 4D printed shape memory polymers and their structures for biomedical applications. Sci China Tech Sci, 2020, 63: 545–560

    Article  Google Scholar 

  86. Choi J, Kwon O C, Jo W, et al. 4D printing technology: A review. 3D Printing Additive Manuf, 2015, 2: 159–167

    Article  Google Scholar 

  87. Ma S Q, Zhang Y P, Wang M, et al. Recent progress in 4D printing of stimuli-responsive polymeric materials. Sci China Tech Sci, 2020, 63: 532–544

    Article  Google Scholar 

  88. Wood R J, Avadhanula S, Sahai R, et al. Microrobot design using fiber reinforced composites. J Mech Des, 2008, 130: 052304

    Article  Google Scholar 

  89. Gustafson K, Angatkina O, Wissa A. Model-based design of a multi-stable origami-enabled crawling robot. Smart Mater Struct, 2020, 29: 015013

    Article  Google Scholar 

  90. Kim W, Byun J, Kim J K, et al. Bioinspired dual-morphing stretch-able origami. Sci Robot, 2019, 4: eaay3493

    Article  Google Scholar 

  91. Chen Y, Doshi N, Goldberg B, et al. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nat Commun, 2018, 9: 2495

    Article  Google Scholar 

  92. Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1999

    Google Scholar 

  93. Zhakypov Z, Paik J. Design Methodology for constructing multimaterial origami robots and machines. IEEE Trans Robot, 2018, 34: 151–165

    Article  Google Scholar 

  94. Felton S, Tolley M, Demaine E, et al. A method for building self-folding machines. Science, 2014, 345: 644–646

    Article  Google Scholar 

  95. Dufour L, Owen K, Mintchev S, et al. A drone with insect-inspired folding wings. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, 2016. 1576–1581

  96. Hu Y, Zhou Y, Liang H. Constructing rigid-foldable generalized Miura-Ori tessellations for curved surfaces. J Mech Robotics, 2021, 13

  97. Saito K, Agnese F, Scarpa F. A cellular kirigami morphing wingbox concept. J Intelligent Material Syst Struct, 2011, 22: 935–944

    Article  Google Scholar 

  98. Li D, Zhao S, Da Ronch A, et al. A review of modelling and analysis of morphing wings. Prog Aerospace Sci, 2018, 100: 46–62

    Article  Google Scholar 

  99. Shepherd R F, Stokes A A, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Ed, 2013, 52: 2892–2896

    Article  Google Scholar 

  100. Whitmore S A, Merkley D P. Arc-ignition of a 70 peroxide/abs hybrid rocket system. In: Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, 2017. 5047

  101. Chen Y T, Zhou J Y. The auto-ignition of kerosene-based synthetic fuel/hydrogen peroxide propellants and its injector design. In: Proceedings of the 2018 Joint Propulsion Conference. Cincinnati, 2018. 4775

  102. Schneider S J. Hydrogen peroxide-water-ethanol monopropellant blend for cubesat propulsion. In: Proceedings of the AIAA Propulsion and Energy 2020 Forum. New Orleans, 2020. 3809

  103. Kolsgaard A. Hydrogen peroxide based reaction control system, In: Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, 2017. 4925

  104. Siddall R, Kennedy G, and Kovac M. High-power propulsion strategies for aquatic take-off in robotics. Robotics Res, 2018, 1: 5–20

    Article  Google Scholar 

  105. Roddy M, Hodges H, Roe L, et al. Solid state gas generator for small satellite deorbiter. In: Proceedings of the 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Los Angeles, 2017. 644–649

  106. Roddy M A, Huang P H A. A solid-state gas generator actuated deorbiter for CubeSats. J Microelectromech Syst, 2019, 28: 1068–1079

    Article  Google Scholar 

  107. Norton A A, Minor M A. Pneumatic microactuator powered by the deflagration of sodium azide. J Microelectromech Syst, 2006, 15: 344–354

    Article  Google Scholar 

  108. Lu D, Xiong C, Zhou H, et al. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle. Ocean Eng, 2021, 219: 108324

    Article  Google Scholar 

  109. Wang R, Wang S, Wang Y, et al. Development and motion control of biomimetic underwater robots: A survey. IEEE Trans Syst Man Cybern Syst, 2020, 52: 833–844

    Article  Google Scholar 

  110. Sun T S, Wang Y H, Yang S Q, et al. Design, hydrodynamic analysis, and testing of a bioinspired controllable wing mechanism with multi-locomotion modes for hybrid-driven underwater gliders. Sci China Tech Sci, 2021, 64: 2688–2708

    Article  Google Scholar 

  111. Amin R, Aijun L, Shamshirband S. A review of quadrotor UAV: control methodologies and performance evaluation. IJAAC, 2016, 10: 87–103

    Article  Google Scholar 

  112. Wang R, Wang S, Wang Y, et al. Vision-based autonomous hovering for the biomimetic underwater robot-robcutt-ii. IEEE Trans Ind Electron, 2018, 6611: 8578–8588

    Google Scholar 

  113. Yao P, Qi S B. Obstacle-avoiding path planning for multiple autonomous underwater vehicles with simultaneous arrival. Sci China Tech Sci, 2019, 62: 121–132

    Article  Google Scholar 

  114. Hou T G, Yang X B, Wang T M, et al. Locomotor transition: How squid jet from water to air. Bioinspir Biomim, 2020, 15: 036014

    Article  Google Scholar 

  115. Wang R, Wang S, Wang Y, et al. A paradigm for path following control of a ribbon-fin propelled biomimetic underwater vehicle. IEEE Trans Syst Man Cybern Syst, 2017, 493: 482–493

    Google Scholar 

  116. Elijah T, Jamisola Jr. R S, Tjiparuro Z, et al. A review on control and maneuvering of cooperative fixed-wing drones. Int J Dynam Control, 2021, 9: 1332–1349

    Article  MathSciNet  Google Scholar 

  117. Hegde N T, George V I, Nayak C G, et al. Design, dynamic modelling and control of tilt-rotor UAVs: A review. IJIUS, 2019, 8: 143–161

    Article  Google Scholar 

  118. Huang J, Liang J, Wang T, et al. Numerical analysis of the body, webbed-feet, and wings during cormorant’s take off. In: Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur, 2018. 94–99

  119. Deng J, Zhang L, Liu Z, et al. Numerical prediction of aerodynamic performance for a flying fish during gliding flight. Bioinspir Biomim, 2019, 14: 046009

    Article  Google Scholar 

  120. Huang J, Sun Y, Wang T, et al. Fluid-structure interaction hydrodynamics analysis on a deformed bionic flipper with non-uniformly distributed stiffness. IEEE Robot Autom Lett, 2020, 5: 4657–4662

    Article  Google Scholar 

  121. Huang J, Wang T, Lueth T C, et al. CFD based investigation on the hydroplaning mechanism of a cormorant’s webbed foot propulsion. IEEE Access, 2020, 8: 31551–31561

    Article  Google Scholar 

  122. Chin D D, Lentink D. Flapping wing aerodynamics: From insects to vertebrates. J Exp Biol, 2016, 219: 920–932

    Article  Google Scholar 

  123. Zhang D, Zhang J D, Huang W X. Physical models and vortex dynamics of swimming and flying: A review. Acta Mech, 2022, 233: 1249–1288

    Article  MathSciNet  MATH  Google Scholar 

  124. Lo D S. Finite Element Mesh Generation. London: CRC Press, 2014

    Book  MATH  Google Scholar 

  125. Ho-Le K. Finite element mesh generation methods: A review and classification. Comput-Aided Des, 1988, 20: 27–38

    Article  MATH  Google Scholar 

  126. Malcevic I, Ghattas O. Dynamic-mesh finite element method for Lagrangian computational fluid dynamics. Finite Elem Anal Des, 2002, 38: 965–982

    Article  MathSciNet  MATH  Google Scholar 

  127. Matsushima K, Murayama M, Nakahashi K. Unstructured dynamic mesh for large movement and deformation. In: Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reno, 122

  128. Ostilla-Monico R, Yang Y, van der Poel E P, et al. A multiple-resolution strategy for direct numerical simulation of scalar turbulence. J Comput Phys, 2015, 301: 308–321

    Article  MathSciNet  MATH  Google Scholar 

  129. Bruce Stewart H, Wendroff B. Two-phase flow: Models and methods. J Comput Phys, 1984, 56: 363–409

    Article  MathSciNet  MATH  Google Scholar 

  130. Fekken G. Numerical simulation of free-surface flow with moving rigid bodies. Dissertation for Doctoral Degree. Groningen: University of Groningen, 2004

    Google Scholar 

  131. Kleefsman K M T, Fekken G, Veldman A E P, et al. A volume-of-fluid based simulation method for wave impact problems. J Comput Phys, 2005, 206: 363–393

    Article  MathSciNet  MATH  Google Scholar 

  132. Sharker S I, Holekamp S, Mansoor M M, et al. Water entry impact dynamics of diving birds. Bioinspir Biomim, 2019, 14: 056013

    Article  Google Scholar 

  133. Park H, Choi H. Aerodynamic characteristics of flying fish in gliding flight. J Exp Biol, 2010, 213: 3269–3279

    Article  Google Scholar 

  134. Hedenström A, Johansson L C, Wolf M, et al. Bat flight generates complex aerodynamic tracks. Science, 2007, 316: 894–897

    Article  Google Scholar 

  135. Young J, Walker S M, Bomphrey R J, et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 2009, 325: 1549–1552

    Article  Google Scholar 

  136. Wen L, Wang T, Wu G, et al. Quantitative thrust efficiency of a self-propulsive robotic fish: Experimental method and hydrodynamic investigation. IEEE/Asme Trans Mech, 2012, 183: 1027–1038

    Google Scholar 

  137. Anderson E J, Grosenbaugh M A. Jet flow in steadily swimming adult squid. J Exp Biol, 2005, 208: 1125–1146

    Article  Google Scholar 

  138. Bartol I K, Krueger P S, Stewart W J, et al. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: Evidence of multiple jet “modes” and their implications for propulsive efficiency. J Exp Biol, 2009, 212: 1889–1903

    Article  Google Scholar 

  139. Bartol I K, Krueger P S, Jastrebsky R A, et al. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first. J Exp Biol, 2015

  140. Guo X Y, Li W B, Zhang W M. Adjustable stiffness elastic composite soft actuator for fast-moving robots. Sci China Tech Sci, 2021, 64: 1663–1675

    Article  Google Scholar 

  141. Yang X, and Pei X. Hybrid system for powering unmanned aerial vehicles: Demonstration and study cases. In: Hybrid Technologies for Power Generation. Elsever, 2022. 439–473

  142. Wei X Y, Xiong J, Wang J, et al. New advances in fiber-reinforced composite honeycomb materials. Sci China Tech Sci, 2020, 63: 1348–1370

    Article  Google Scholar 

  143. Pan J, Shi Z Y, Wang T M. Variable-model SMA-driven spherical robot. Sci China Tech Sci, 2019, 62: 1401–1411

    Article  Google Scholar 

  144. Huang Y A, Zhu C, Xiong W N, et al. Flexible smart sensing skin for “Fly-by-Feel” morphing aircraft. Sci China Tech Sci, 2022, 65: 1–29

    Article  Google Scholar 

  145. Rendón M A, Sánchez R. C D, Gallo M. J, et al. Aircraft hybrid-electric propulsion: Development trends, challenges and opportunities. J Control Autom Electr Syst, 2021, 32: 1244–1268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TaoGang Hou.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 62103035), Beijing Natural Science Foundation (Grant No. 3222016), China Postdoctoral Science Foundation (Grant No. 2021M690337), the Fundamental Research Funds for the Central Universities (Grant No. 2020JBM265), and the Beijing Laboratory for Urban Mass Transit (Grant No. 353203535).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, X., Zhao, J. et al. Aquatic unmanned aerial vehicles (AquaUAV): Bionic prototypes, key technologies, analysis methods, and potential solutions. Sci. China Technol. Sci. 66, 2308–2331 (2023). https://doi.org/10.1007/s11431-022-2142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2142-9

Keywords

Navigation