Skip to main content
Log in

Connectivity-preserving consensus of nonlinear switched multi-agent systems with predefined accuracy

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper focuses on the connectivity-preserving consensus of nonlinear switched multi-agent systems with predefined accuracy. Accordingly, a unified error transformation is adopted to preserve the initial interaction pattern determined by agents’ limited communication ranges and initial states. Meanwhile, the so-called congelation of variables method is used to handle the unknown aperiodically time-varying parameters, which are fast-varying in an unknown compact set with only their radii known a priori. In addition, a series of continuously differentiable functions are incorporated into the Lyapunov function to design the controller. Based on Lyapunov stability theory, the proposed control algorithm guarantees that the consensus errors converge with a predefined accuracy, whereas most existing connectivity-preserving results can only ensure uniform ultimate boundedness. Simultaneously, all closed-loop signals remain bounded. Finally, two simulations are provided to validate the effectiveness of the proposed control protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan C, He H, Wang C. Cooperative deterministic learning-based formation control for a group of nonlinear uncertain mechanical systems. IEEE Trans Ind Inf, 2019, 15: 319–333

    Article  Google Scholar 

  2. Pei Y Q, Gu H B, Liu K X, et al. An overview on the designs of distributed observers in LTI multi-agent systems. Sci China Tech Sci, 2021, 64: 2337–2346

    Article  Google Scholar 

  3. Yoo S J. Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph. IEEE Trans Neural Netw Learn Syst, 2013, 24: 666–672

    Article  Google Scholar 

  4. Wen G, Zhao Y, Duan Z, et al. Containment of higher-order multi-leader multi-agent systems: A dynamic output approach. IEEE Trans Automat Contr, 2016, 61: 1135–1140

    Article  MathSciNet  MATH  Google Scholar 

  5. Su H, Chen G, Wang X, et al. Adaptive second-order consensus of networked mobile agents with nonlinear dynamics. Automatica, 2011, 47: 368–375

    Article  MathSciNet  MATH  Google Scholar 

  6. Li Y, Zhang J, Tong S. Fuzzy adaptive optimized leader-following formation control for second-order stochastic multiagent systems. IEEE Trans Ind Inf, 2022, 18: 6026–6037

    Article  Google Scholar 

  7. Chen J, Li Z, Ding Z. Adaptive output regulation of uncertain nonlinear systems with unknown control directions. Sci China Inf Sci, 2019, 62: 89205

    Article  MathSciNet  Google Scholar 

  8. Ong C J, Hou B. Consensus of heterogeneous multi-agent system with input constraints. Automatica, 2021, 134: 109895

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao C, Wang Z, He X, et al. Sampled-data-based fault-tolerant consensus control for multi-agent systems: A data privacy preserving scheme. Automatica, 2021, 133: 109847

    Article  MathSciNet  MATH  Google Scholar 

  10. Ke J, Li Y, Zeng J. Consensus of multi-agent systems with both input amplitude and input rate constraints. J Franklin Inst, 2021, 358: 10004–10028

    Article  MathSciNet  MATH  Google Scholar 

  11. Yao L L, Wang H. Designing fixed-time tracking consensus protocols for networked Euler-Lagrangian systems with directed graphs. Sci China Tech Sci, 2020, 63: 1846–1853

    Article  Google Scholar 

  12. Ke C, Li C, Han Y, et al. Adaptive fuzzy leader-following consensus for nonlinear multi-agent systems via state-constraint impulsive control. Int J Mach Learn Cyber, 2021, 12: 3011–3022

    Article  Google Scholar 

  13. Li S, Zou W, Guo J, et al. Consensus of switched nonlinear multiagent systems subject to cyber attacks. IEEE Syst J, 2022, 16: 4423–4432

    Article  Google Scholar 

  14. Xiao S, Dong J. Distributed fault-tolerant tracking control for heterogeneous nonlinear multi-agent systems under sampled intermittent communications. J Franklin Inst, 2021, 358: 9221–9242

    Article  MathSciNet  MATH  Google Scholar 

  15. Atrianfar H, Yadollahi S. Event-triggered adaptive sliding mode control for consensus of heterogeneous nonlinear multiagent systems. Intl J Robust Nonlinear, 2021, 31: 9294–9315

    Article  MathSciNet  Google Scholar 

  16. Ajorlou A, Momeni A, Aghdam A G. A class of bounded distributed control strategies for connectivity preservation in multi-agent systems. IEEE Trans Automat Contr, 2010, 55: 2828–2833

    Article  MathSciNet  MATH  Google Scholar 

  17. Hong H, Yu W, Yu X, et al. Fixed-time connectivity-preserving distributed average tracking for multiagent systems. IEEE Trans Circuits Syst II, 2017, 64: 1192–1196

    Google Scholar 

  18. Ai X, Song S, You K. Second-order consensus of multi-agent systems under limited interaction ranges. Automatica, 2016, 68: 329–333

    Article  MathSciNet  MATH  Google Scholar 

  19. He X Y, Wang Q Y, Hao Y Q. Finite-time adaptive formation control for multi-agent systems with uncertainties under collision avoidance and connectivity maintenance. Sci China Tech Sci, 2020, 63: 2305–2314

    Article  Google Scholar 

  20. Li Q, Wei J, Yuan J, et al. Distributed event-triggered adaptive finite-time consensus control for second-order multi-agent systems with connectivity preservation. J Franklin Inst, 2021, 358: 6013–6034

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi Y, Hu Q. Event-driven connectivity-preserving coordinated control for multiple spacecraft systems with a distance-dependent dynamic graph. IEEE Trans Cybern, 2022, 52: 12551–12560

    Article  Google Scholar 

  22. Wang C, Liu C L, Liu S. Robust fixed-time connectivity-preserving consensus for second-order multi-agent systems with external disturbances. IET Control Theor Appl, 2020, 14: 2674–2681

    Article  MathSciNet  Google Scholar 

  23. Liu Y, Zhang F, Huang P, et al. Fixed-time consensus tracking control with connectivity preservation for strict-feedback nonlinear multiagent systems. ISA Trans, 2022, 123: 14–24

    Article  Google Scholar 

  24. Yoo S J. Connectivity-preserving consensus tracking of uncertain nonlinear strict-feedback multiagent systems: An error transformation approach. IEEE Trans Neural Netw Learn Syst, 2018, 29: 4542–4548

    Article  Google Scholar 

  25. Yoo S J. Connectivity-preserving design strategy for distributed cooperative tracking of uncertain nonaffine nonlinear time-delay multi-agent systems. Inf Sci, 2020, 514: 541–556

    Article  MathSciNet  MATH  Google Scholar 

  26. Park B S, Yoo S J. Connectivity-maintaining and collision-avoiding performance function approach for robust leader-follower formation control of multiple uncertain underactuated surface vessels. Automatica, 2021, 127: 109501

    Article  MathSciNet  MATH  Google Scholar 

  27. Xia G, Xia X, Zhao B, et al. Distributed tracking control for connectivity-preserving and collision-avoiding formation tracking of underactuated surface vessels with input saturation. Appl Sci, 2020, 10: 3372

    Article  Google Scholar 

  28. Xu Y, Wang C, Yan W, et al. Connectivity-preserving-based distributed adaptive asymptotically synchronised tracking of networked uncertain nonholonomic mobile robots with actuator failures and unknown control directions. Int J Syst Sci, 2021, 52: 2358–2374

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu J, Peng H. Modeling and control of a power-split hybrid vehicle. IEEE Trans Contr Syst Technol, 2008, 16: 1242–1251

    Article  Google Scholar 

  30. Marks II R J, Gravagne I A, Davis J M, et al. Nonregressivity in switched linear circuits and mechanical systems. Math Comput Model, 2006, 43: 1383–1392

    Article  MathSciNet  MATH  Google Scholar 

  31. Foehn P, Falanga D, Kuppuswamy N, et al. Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload. In: Proceedings of the Robotics: Science and Systems. Boston, 2017. 1–10

  32. Cai B, Zhang L, Shi Y. Observed-mode-dependent state estimation of Hidden Semi-Markov jump linear systems. IEEE Trans Automat Contr, 2020, 65: 442–449

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang L, Cai B, Tan T, et al. Stabilization of non-homogeneous hidden semi-Markov Jump systems with limited sojourn-time information. Automatica, 2020, 117: 108963

    Article  MathSciNet  MATH  Google Scholar 

  34. Li Y, Liu Y, Tong S. Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints. IEEE Trans Neural Netw Learn Syst, 2022, 33: 3131–3145

    Article  MathSciNet  Google Scholar 

  35. Yang J, Ning Z, Zhu Y, et al. Semi-Markov jump linear systems with bi-boundary sojourn time: Anti-modal-asynchrony control. Automatica, 2022, 140: 110270

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeng D, Liu Z, Chen C L P, et al. Event-triggered fuzzy adaptive control of nonlinear switched systems with predefined accuracy and mismatched switching. Fuzzy Sets Syst, 2022, 443: 283–307

    Article  MathSciNet  Google Scholar 

  37. Li Z, Zhao J. Adaptive consensus of non-strict feedback switched multi-agent systems with input saturations. IEEE CAA J Autom Sin, 2021, 8: 1752–1761

    Article  MathSciNet  Google Scholar 

  38. Yao D, Dou C, Yue D, et al. Event-triggered adaptive consensus tracking control for nonlinear switching multi-agent systems. Neurocomputing, 2020, 415: 157–164

    Article  Google Scholar 

  39. Lu K, Liu Z, Lai G, et al. Adaptive consensus tracking control of uncertain nonlinear multiagent systems with predefined accuracy. IEEE Trans Cybern, 2021, 51: 405–415

    Article  Google Scholar 

  40. Wang W, Wen C, Huang J. Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances. Automatica, 2017, 77: 133–142

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen J, Li J, Yang N. Globally repetitive learning consensus control of unknown nonlinear multi-agent systems with uncertain time-varying parameters. Appl Math Model, 2021, 89: 348–362

    Article  MathSciNet  MATH  Google Scholar 

  42. Yoo S J, Park B S. Connectivity preservation and collision avoidance in networked nonholonomic multi-robot formation systems: Unified error transformation strategy. Automatica, 2019, 103: 274–281

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen K, Astolfi A. Adaptive control for systems with time-varying parameters. IEEE Trans Automat Contr, 2021, 66: 1986–2001

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen W, Ge S S, Wu J, et al. Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Trans Neural Netw Learn Syst, 2015, 26: 1842–1854

    Article  MathSciNet  Google Scholar 

  45. Loizou S G, Lui D G, Petrillo A, et al. Connectivity preserving formation stabilization in an obstacle-cluttered environment in the presence of time-varying communication delays. IEEE Trans Automat Contr, 2022, 67: 5525–5532

    Article  MathSciNet  Google Scholar 

  46. Li C, Tanner H G. Navigation functions with time-varying destination manifolds in star worlds. IEEE Trans Robot, 2019, 35: 35–48

    Article  Google Scholar 

  47. Li Y, Tong S. Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems. IEEE Trans Fuzzy Syst, 2017, 25: 668–681

    Article  Google Scholar 

  48. Wu J, Li J. Adaptive fuzzy control for perturbed strict-feedback nonlinear systems with predefined tracking accuracy. Nonlinear Dyn, 2016, 83: 1185–1197

    Article  MathSciNet  MATH  Google Scholar 

  49. Goodwin G C, Khwang Teoh E. Adaptive control of a class of linear time varying systems. IFAC Proc Vol, 1983, 16: 1–6

    Article  Google Scholar 

  50. Xu J X. A new periodic adaptive control approach for time-varying parameters with known periodicity. IEEE Trans Automat Contr, 2004, 49: 579–583

    Article  MathSciNet  MATH  Google Scholar 

  51. Spong M W, Hutchinson S, Vidyasagar M. Robot modeling and control. IEEE Control Syst, 2006, 26: 113–115

    Article  Google Scholar 

  52. Cai B, Weng R, Zhang R X, et al. Stabilization of a class of fuzzy stochastic jump systems with partial information on jump and sojourn parameters. Sci China Tech Sci, 2021, 64: 353–363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 61673014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Li, J. & Chen, X. Connectivity-preserving consensus of nonlinear switched multi-agent systems with predefined accuracy. Sci. China Technol. Sci. 66, 1769–1783 (2023). https://doi.org/10.1007/s11431-022-2140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2140-9

Navigation