Skip to main content
Log in

Trans-scale surface wrinkling model and scaling relationship analysis of stiff film-compliant substrate structures

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The self-assembly of surface-order structures based on the surface wrinkling of stiff film-compliant substrate structures (SFCS) is potentially useful in the fabrication of functional devices, the manufacture of superhydrophobic or self-cleaning surfaces, and so on. Due to the influence of the intrinsic characteristic length (g), the surface wrinkling behavior of SFCS at the micro scale is different from that at the macro scale. In this work, based on the strain gradient theory, a trans-scale surface wrinkling model for SFCS is established. First, the effectiveness of this model is verified by previous experiments. Then, based on the model and dimensional analysis, the effect of g on the surface wrinkling behavior is investigated, and the scaling relationship of surface wrinkling of SFCS at different scales is analyzed. The results show that the influence of g cannot be neglected when the film thickness decreases to the one comparable to g. At the micro scale, g will lead to the increase of the critical wrinkling wavelength and load. In addition, the scaling relationship of surface wrinkling at the micro scale will not follow the traditional one. Our study explains the underlying mechanism of the dissimilarity of surface wrinkling behaviors of SFCS at different scales and lays a theoretical foundation for the precise control of surface-order structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shahbaz Alam M, Khan M, Faruque Ahmed S. Nanostructure wrinkle thin films on flexible substrate: Tunable optical properties. Mater Today-Proc, 2022, 49: 1401–1407

    Article  Google Scholar 

  2. Li F, Hou H, Yin J, et al. Near-infrared light-responsive dynamic wrinkle patterns. Sci Adv, 2018, 4: 5762

    Article  Google Scholar 

  3. Ma R S, Ma J, Yan J, et al. Wrinkle-induced highly conductive channels in graphene on SiO2/Si substrates. Nanoscale, 2020, 12: 12038–12045

    Article  Google Scholar 

  4. Feng C, Yi Z, Dumée L F, et al. Tuning micro-wrinkled graphene films for stretchable conductors of controllable electrical conductivity. Carbon, 2018, 139: 672–679

    Article  Google Scholar 

  5. Yousefi B, Gharehaghaji A A, Asgharian Jeddi A A, et al. The combined effect of wrinkles and noncircular shape of fibers on wetting behavior of electrospun cellulose acetate membranes. J Polym Sci Part B-Polym Phys, 2018, 56: 1012–1020

    Article  Google Scholar 

  6. Lin G, Zhang Q, Lv C, et al. Small degree of anisotropic wetting on self-similar hierarchical wrinkled surfaces. Soft Matter, 2018, 14: 1517–1529

    Article  Google Scholar 

  7. Lee W K, Engel C J, Huntington M D, et al. Controlled three-dimensional hierarchical structuring by memory-based, sequential wrinkling. Nano Lett, 2015, 15: 5624–5629

    Article  Google Scholar 

  8. Bowden N, Brittain S, Evans A G, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 1998, 393: 146–149

    Article  Google Scholar 

  9. Wang J W, Li B, Cao Y P, et al. Surface wrinkling patterns of film—substrate systems with a structured interface. J Appl Mech, 2015, 82: 051009

    Article  Google Scholar 

  10. Huang H, Chung J Y, Nolte A J, et al. Characterizing polymer brushes via surface wrinkling. Chem Mater, 2007, 19: 6555–6560

    Article  Google Scholar 

  11. Chung J Y, Nolte A J, Stafford C M. Surface wrinkling: A versatile platform for measuring thin-film properties. Adv Mater, 2011, 23: 349–368

    Article  Google Scholar 

  12. Ferretti G L, Nania M, Matar O K, et al. Wrinkling measurement of the mechanical properties of drying salt thin films. Langmuir, 2016, 32: 2199–2207

    Article  Google Scholar 

  13. Choi H J, Kim J H, Lee H J, et al. Wrinkle-based measurement of elastic modulus of nano-scale thin Pt film deposited on polymeric substrate: verification and uncertainty analysis. Exp Mech, 2010, 50: 635–641

    Article  Google Scholar 

  14. Cerda E, Mahadevan L. Geometry and physics of wrinkling. Phys Rev Lett, 2003, 90: 074302

    Article  Google Scholar 

  15. Chen X, Hutchinson J W. Herringbone buckling patterns of compressed thin films on compliant substrates. J Appl Mech, 2004, 71: 597–603

    Article  MATH  Google Scholar 

  16. Huang Z Y, Hong W, Suo Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids, 2005, 53: 2101–2118

    Article  MathSciNet  MATH  Google Scholar 

  17. Yin J, Chen X. Elastic buckling of gradient thin films on compliant substrates. Philos Mag Lett, 2010, 90: 423–433

    Article  Google Scholar 

  18. Stoop N, Lagrange R, Terwagne D, et al. Curvature-induced symmetry breaking determines elastic surface patterns. Nat Mater, 2015, 14: 337–342

    Article  Google Scholar 

  19. Xu F, Potier-Ferry M. Quantitative predictions of diverse wrinkling patterns in film/substrate systems. Sci Rep, 2017, 7: 18081

    Article  Google Scholar 

  20. Chandra D, Crosby A J. Self-wrinkling of UV-cured polymer films. Adv Mater, 2011, 23: 3441–3445

    Article  Google Scholar 

  21. Zhao R, Zhao X. Multimodal surface instabilities in curved film-substrate structures. J Appl Mech, 2017, 84: 081001

    Article  Google Scholar 

  22. Huang R, Suo Z. Wrinkling of a compressed elastic film on a viscous layer. J Appl Phys, 2002, 91: 1135–1142

    Article  Google Scholar 

  23. Ni Y, Yang D, He L. Spontaneous wrinkle branching by gradient stiffness. Phys Rev E, 2012, 86: 031604

    Article  Google Scholar 

  24. Sun Y, Yan L, Li C, et al. Evolution of local wrinkles near defects on stiff film/compliant substrate. Eur Phys J E, 2018, 41: 31

    Article  Google Scholar 

  25. Huang X, Li B, Hong W, et al. Effects of tension-compression asymmetry on the surface wrinkling of film-substrate systems. J Mech Phys Solids, 2016, 94: 88–104

    Article  MathSciNet  Google Scholar 

  26. Zang J, Zhao X, Cao Y, et al. Localized ridge wrinkling of stiff films on compliant substrates. J Mech Phys Solids, 2012, 60: 1265–1279

    Article  Google Scholar 

  27. Hutchinson J W. The role of nonlinear substrate elasticity in the wrinkling of thin films. Phil Trans R Soc A, 2013, 371: 20120422

    Article  MathSciNet  MATH  Google Scholar 

  28. Cao Y, Hutchinson J W. Wrinkling phenomena in neo-Hookean film/substrate bilayers. J Appl Mech, 2012, 79: 031019

    Article  Google Scholar 

  29. Jiang H, Khang D Y, Song J, et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA, 2007, 104: 15607–15612

    Article  Google Scholar 

  30. Zhao Y, Zhu H, Jiang C, et al. Wrinkling pattern evolution on curved surfaces. J Mech Phys Solids, 2020, 135: 103798

    Article  MathSciNet  Google Scholar 

  31. Huang Z, Hong W, Suo Z. Evolution of wrinkles in hard films on soft substrates. Phys Rev E, 2004, 70: 030601

    Article  Google Scholar 

  32. Im S H, Huang R. Wrinkle patterns of anisotropic crystal films on viscoelastic substrates. J Mech Phys Solids, 2008, 56: 3315–3330

    Article  MATH  Google Scholar 

  33. Psarra E, Bodelot L, Danas K. Wrinkling to crinkling transitions and curvature localization in a magnetoelastic film bonded to a nonmagnetic substrate. J Mech Phys Solids, 2019, 133: 103734

    Article  MathSciNet  Google Scholar 

  34. Zhu H T, Zbib H M, Aifantis E C. Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech, 1997, 121: 165–176

    Article  MATH  Google Scholar 

  35. Elmustafa A A, Stone D S. Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J Mech Phys Solids, 2003, 51: 357–381

    Article  MATH  Google Scholar 

  36. Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity. J Mech Phys Solids, 2003, 51: 1477–1508

    Article  MATH  Google Scholar 

  37. Greer J R, De Hosson J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci, 2011, 56: 654–724

    Article  Google Scholar 

  38. Greer J R, Oliver W C, Nix W D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater, 2005, 53: 1821–1830

    Article  Google Scholar 

  39. Zhu X W, Li L. Three-dimensionally nonlocal tensile nanobars incorporating surface effect: A self-consistent variational and well-posed model. Sci China Tech Sci, 2021, 64: 1–14

    Article  Google Scholar 

  40. Mindlin R D, Eshel N N. On first strain-gradient theories in linear elasticity. Int J Solids Struct, 1968, 4: 109–124

    Article  MATH  Google Scholar 

  41. Zhang Y, Cheng Z, Lu L, et al. Strain gradient plasticity in gradient structured metals. J Mech Phys Solids, 2020, 140: 103946

    Article  MathSciNet  Google Scholar 

  42. Chong A C M, Lam D C C. Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res, 1999, 14: 4103–4110

    Article  Google Scholar 

  43. Liu Y, Ma H, Long H, et al. Couple effect of surface energy and strain gradient on the mechanical behaviors of the biological staggered composites. Composite Struct, 2021, 271: 114133

    Article  Google Scholar 

  44. Long H, Ma H, Wei Y, et al. A size-dependent model for predicting the mechanical behaviors of adhesively bonded layered structures based on strain gradient elasticity. Int J Mech Sci, 2021, 198: 106348

    Article  Google Scholar 

  45. Liu Y, Ma H, Wei Y, et al. Size effect investigation of indentation response of stiff film/compliant substrate composite structure. Int J Solids Struct, 2020, 193–194: 106–116

    Article  Google Scholar 

  46. Papargyri-Beskou S, Tsepoura K G, Polyzos D, et al. Bending and stability analysis of gradient elastic beams. Int J Solids Struct, 2003, 40: 385–400

    Article  MATH  Google Scholar 

  47. Lazopoulos K A, Lazopoulos A K. Bending and buckling of thin strain gradient elastic beams. Eur J Mech-A Solids, 2010, 29: 837–843

    Article  MATH  Google Scholar 

  48. Gao X L, Ma H M. Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J Mech Phys Solids, 2010, 58: 779–797

    Article  MathSciNet  MATH  Google Scholar 

  49. Georgiadis H G, Vardoulakis I, Velgaki E G. Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J Elasticity, 2004, 74: 17–45

    Article  MathSciNet  MATH  Google Scholar 

  50. Mindlin R D. Micro-structure in linear elasticity. Arch Rational Mech Anal, 1964, 16: 51–78

    Article  MathSciNet  MATH  Google Scholar 

  51. Ma H, Wei Y, Song J, et al. Mechanical behavior and size effect of the staggered bio-structure materials. Mech Mater, 2018, 126: 47–56

    Article  Google Scholar 

  52. Song J, Wei Y. A method to determine material length scale parameters in elastic strain gradient theory. J Appl Mech, 2020, 87: 031010

    Article  Google Scholar 

  53. Cuenot S, Frétigny C, Demoustier-Champagne S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B, 2004, 69: 165410

    Article  Google Scholar 

  54. Wang Z X, Wang J R, Wang W Y, et al. Scaling relationships of elastic-perfectly plastic film/coating materials from small scale sharp indentation. Sci China Tech Sci, 2021, 64: 1302–1310

    Article  Google Scholar 

  55. Biot M A. Bending of an infinite beam on an elastic foundation. ASME J Appl Mech, 1937, 4: A1–A7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YueGuang Wei.

Additional information

Supporting Information

The supporting information is available online at https://tech.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

This work was supported by the Postdoctoral Science Foundation of China for Innovative Talents (Grant No. BX2022008) and the National Natural Science Foundation of China (Grant Nos. 12202007, 11890681, 12032001 and 11521202). Yanwei Liu appreciates the valuable discussion with Dr. Zhijie Yu.

Supplementary material for the

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, S., Long, H. et al. Trans-scale surface wrinkling model and scaling relationship analysis of stiff film-compliant substrate structures. Sci. China Technol. Sci. 65, 2776–2786 (2022). https://doi.org/10.1007/s11431-022-2132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2132-0

Keywords

Navigation