Skip to main content
Log in

Distributed hybrid optimization for multi-agent systems

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper addresses the distributed optimization problems of multi-agent systems using a distributed hybrid impulsive protocol. The objective is to ensure the agents achieve the state consensus and optimize the aggregate objective functions assigned for each agent with distributed manner. We establish two criteria related to the optimality condition and the impulsive gain upper estimation, and propose a distributed hybrid impulsive optimal protocol, which includes two terms: the local averaging term in the continuous interval and the term involving the gradient information at impulsive instants. The simulation results show that the optimal consensus can be realized under the distributed hybrid impulsive optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang T, Yi X, Wu J, et al. A survey of distributed optimization. Annu Rev Control, 2019, 47: 278–305

    Article  MathSciNet  Google Scholar 

  2. Wang G. Distributed control of higher-order nonlinear multi-agent systems with unknown non-identical control directions under general directed graphs. Automatica, 2019, 110: 108559

    Article  MathSciNet  Google Scholar 

  3. Nedic A, Liu J. Distributed optimization for control. Annu Rev Control Robot Auton Syst, 2018, 1: 77–103

    Article  Google Scholar 

  4. Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom Control, 2009, 54: 48–61

    Article  MathSciNet  Google Scholar 

  5. Nedic A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Trans Autom Control, 2010, 55: 922–938

    Article  MathSciNet  Google Scholar 

  6. Chen R J, Yang T, Chai T Y. Distributed accelerated optimization algorithms: Insights from an ODE. Sci China Tech Sci, 2020, 63: 1647–1655

    Article  Google Scholar 

  7. Li W, Zeng X, Liang S, et al. Exponentially convergent algorithm design for constrained distributed optimization via nonsmooth approach. IEEE Trans Autom Control, 2022, 67: 934–940

    Article  MathSciNet  Google Scholar 

  8. Yao Y Y, Tian F Z, Mei F, et al. Dynamical economic dispatch using distributed barrier function-based optimization algorithm. Sci China Tech Sci, 2019, 62: 2104–2112

    Article  Google Scholar 

  9. Tsitsiklis J, Athans M. Convergence and asymptotic agreement in distributed decision problems. IEEE Trans Autom Control, 1984, 29: 42–50

    Article  MathSciNet  Google Scholar 

  10. Li X, Xie L, Hong Y. Distributed aggregative optimization over multi-agent networks. IEEE Trans Autom Control, 2022, 67: 3165–3171

    Article  MathSciNet  Google Scholar 

  11. Nedic A, Olshevsky A, Rabbat M G. Network topology and communication-computation tradeoffs in decentralized optimization. Proc IEEE, 2018, 106: 953–976

    Article  Google Scholar 

  12. Nedic A, Olshevsky A. Distributed optimization over time-varying directed graphs. IEEE Trans Autom Control, 2015, 60: 601–615

    Article  MathSciNet  Google Scholar 

  13. Qu G, Li N. Harnessing smoothness to accelerate distributed optimization. IEEE Trans Control Netw Syst, 2018, 5: 1245–1260

    Article  MathSciNet  Google Scholar 

  14. Wang J, Elia N. Control approach to distributed optimization. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello, 2010. 557–561

  15. Wang J, Elia N. A control perspective for centralized and distributed convex optimization. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, 2011. 3800–3805

  16. Liu Q, Le X, Li K. A distributed optimization algorithm based on multiagent network for economic dispatch with region partitioning. IEEE Trans Cybern, 2021, 51: 2466–2475

    Article  Google Scholar 

  17. Yuan K, Ling Q, Yin W. On the convergence of decentralized gradient descent. SIAM J Optim, 2016, 26: 1835–1854

    Article  MathSciNet  Google Scholar 

  18. Duchi J C, Agarwal A, Wainwright M J. Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans Autom Control, 2012, 57: 592–606

    Article  MathSciNet  Google Scholar 

  19. Zanella F, Varagnolo D, Cenedese A, et al. Newton-Raphson consensus for distributed convex optimization. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, 2011. 5917–5922

  20. Pu S, Shi W, Xu J, et al. Push-pull gradient methods for distributed optimization in networks. IEEE Trans Autom Control, 2021, 66: 1–16

    Article  MathSciNet  Google Scholar 

  21. Lu Q, Liao X, Li H, et al. A nesterov-like gradient tracking algorithm for distributed optimization over directed networks. IEEE Trans Syst Man Cybern Syst, 2021, 51: 6258–6270

    Article  Google Scholar 

  22. Nedic A, Olshevsky A. Stochastic gradient-push for strongly convex functions on time-varying directed graphs. IEEE Trans Autom Control, 2016, 61: 3936–3947

    Article  MathSciNet  Google Scholar 

  23. Shi W, Ling Q, Wu G, et al. EXTRA: An exact first-order algorithm for decentralized consensus optimization. SIAM J Optim, 2015, 25: 944–966

    Article  MathSciNet  Google Scholar 

  24. Shi W, Ling Q, Wu G, et al. A proximal gradient algorithm for decentralized composite optimization. IEEE Trans Signal Process, 2015, 63: 6013–6023

    Article  MathSciNet  Google Scholar 

  25. Aybat N S, Wang Z, Lin T, et al. Distributed linearized alternating direction method of multipliers for composite convex consensus optimization. IEEE Trans Autom Control, 2018, 63: 5–20

    Article  MathSciNet  Google Scholar 

  26. Dhingra N K, Khong S Z, Jovanovic M R. The proximal augmented lagrangian method for nonsmooth composite optimization. IEEE Trans Autom Control, 2019, 64: 2861–2868

    Article  MathSciNet  Google Scholar 

  27. Xu J, Zhu S, Soh Y C, et al. A bregman splitting scheme for distributed optimization over networks. IEEE Trans Autom Control, 2018, 63: 3809–3824

    Article  MathSciNet  Google Scholar 

  28. Xu J, Zhu S, Soh Y, et al. Augmented distributed gradient methods for multi-agent optimization under uncoordinated constant stepsizes. In: Proceedigns of the 54th IEEE Conference on Decision and Control (CDC). Osaka, 2015. 2055–2060

  29. Nedic A, Olshevsky A, Shi W. Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J Optim, 2017, 27: 2597–2633

    Article  MathSciNet  Google Scholar 

  30. Xu J, Zhu S, Soh Y C, et al. Convergence of asynchronous distributed gradient methods over stochastic networks. IEEE Trans Autom Control, 2018, 63: 434–448

    Article  MathSciNet  Google Scholar 

  31. Shi X, Yu X, Cao J, et al. Continuous distributed algorithms for solving linear equations in finite time. Automatica, 2020, 113: 108755

    Article  MathSciNet  Google Scholar 

  32. Yang S, Liu Q, Wang J. A collaborative neurodynamic approach to multiple-objective distributed optimization. IEEE Trans Neural Netw Learn Syst, 2018, 29: 981–992

    Article  Google Scholar 

  33. Zhao Y, Liu Y, Wen G, et al. Distributed optimization for linear multiagent systems: edge- and node-based adaptive designs. IEEE Trans Autom Control, 2017, 62: 3602–3609

    Article  MathSciNet  Google Scholar 

  34. Yue D, Baldi S, Cao J, et al. Distributed adaptive optimization with weight-balancing. IEEE Trans Autom Control, 2022, 67: 2068–2075

    Article  MathSciNet  Google Scholar 

  35. He X, Yu J, Huang T, et al. Average quasi-consensus algorithm for distributed constrained optimization: Impulsive communication framework. IEEE Trans Cybern, 2020, 50: 351–360

    Article  Google Scholar 

  36. Wang X F, Teel A R, Liu K Z, et al. Stability analysis of distributed convex optimization under persistent attacks: A hybrid systems approach. Automatica, 2020, 111: 108607

    Article  MathSciNet  Google Scholar 

  37. Munir M S, Kim D H, Kang S W, et al. Intelligent grid shepherd: Towards a resilient distributed energy resources control system. In: Proceedigns of the 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS). Tainan, 2021. 398–401

  38. Ma X, Elia N. A distributed continuous-time gradient dynamics approach for the active power loss minimizations. In: Proceedigns of the 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello, 2013. 100–106

  39. Xu Q, Dai P C, Wang L, et al. Distributed consensus-based algorithm for social welfare in smart grid with transmission losses. Sci China Tech Sci, 2020, 63: 44–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XueGang Tan or JinDe Cao.

Additional information

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2020YFA0714300), the National Natural Science Foundation of China (Grant Nos. 61833005 and 62003084), the Fundamental Research Funds for the Central Universities, the Jiangsu Provincial Key Laboratory of Networked Collective Intelligence (Grant No. BM2017002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Yuan, Y., He, W. et al. Distributed hybrid optimization for multi-agent systems. Sci. China Technol. Sci. 65, 1651–1660 (2022). https://doi.org/10.1007/s11431-022-2060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2060-7

Keywords

Navigation