Skip to main content
Log in

Interface adhesion properties characterization of sulfide electrode materials by the combination of BOLS and XPS

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Although sulfide electrode materials in lithium battery systems have been intensively investigated due to their low-cost, high theoretical specific capacity, and energy density, there are few studies fousing on the adhesion properties, including the physical origin of hetero-coordination resolved interface relaxation, binding energy and the energetic behavior, and even the accurate quantitative information. In this paper, we present an approach for quantifying the interface adhesion properties of sulfide electrode materials resolved by the combination of bond order-length-strength theory (BOLS) and X-ray photoelectron spectroscopy (XPS), which has enabled clarification of the interface adhesion nature. The results show that the Cu 2p, Fe 2p, and S 2p electrons of CuS and FeS2 compounds shift negatively due to the charge polarization of the conduction electrons of the heteroatoms, while Mo 3d, Sn 3d electrons of MoS2 and SnS2 and the C 1s and S 2p electrons of CS compound shift positively due to the quantum trapping. It is noted that the exact interface adhesion energies of CuS is 3.42 J m−2, which is consistent with the calculation result. The approach can not only clarify the origin of the interface adhesion properties of sulfide electrode materials, but also derive their quantification information from atomistic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zu C, Fu Y, Manthiram A. Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes. J Mater Chem A, 2013, 1: 10362–10367

    Article  Google Scholar 

  2. Peng Y, Zhang Y, Wang Y, et al. Directly coating a multifunctional interlayer on the cathode via electrospinning for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces, 2017, 9: 29804–29811

    Article  Google Scholar 

  3. Sang M S, Chen Y X, Jiang W J, et al. Damage and fracture with strain gradient plasticity for high-capacity electrodes of Li-ion batteries. Sci China Tech Sci, 2021, 64: 1575–1582

    Article  Google Scholar 

  4. Tu S, Chen X, Zhao X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv Mater, 2018, 30: 1804581

    Article  Google Scholar 

  5. Wang L, Wu Z, Zou J, et al. Li-free cathode materials for high energy density lithium batteries. Joule, 2019, 3: 2086–2102

    Article  Google Scholar 

  6. He J, Manthiram A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater, 2019, 20: 55–70

    Article  Google Scholar 

  7. Dubale A A, Tamirat A G, Chen H M, et al. A highly stable CuS and CuS-Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. J Mater Chem A, 2016, 4: 2205–2216

    Article  Google Scholar 

  8. Dinda D, Ahmed M E, Mandal S, et al. Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium. J Mater Chem A, 2016, 4: 15486–15493

    Article  Google Scholar 

  9. Wang X, Wang S, Xie Y, et al. Facet-dependent SnS nanocrystals as the high-performance counter electrode materials for dye-sensitized solar cells. ACS Sustain Chem Eng, 2019, 7: 14353–14360

    Article  Google Scholar 

  10. Chuai M, Yang T, Zhang M. Quantum capacitance of CuS:Ce3+ quantum dots as high-performing supercapacitor electrodes. J Mater Chem A, 2018, 6: 6534–6541

    Article  Google Scholar 

  11. Kumuthini R, Ramachandran R, Therese H A, et al. Electrochemical properties of electrospun MoS2@C nanofiber as electrode material for high-performance supercapacitor application. J Alloys Compd, 2017, 705: 624–630

    Article  Google Scholar 

  12. Wu L, Zheng J, Wang L, et al. PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew Chem Int Ed, 2019, 58: 811–815

    Article  Google Scholar 

  13. Hu Y, Luo B, Ye D, et al. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv Mater, 2017, 29: 1606132

    Article  Google Scholar 

  14. Zhang Y, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries. Adv Mater, 2020, 32: 1905923

    Article  Google Scholar 

  15. Hertzberg B, Alexeev A, Yushin G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J Am Chem Soc, 2010, 132: 8548–8549

    Article  Google Scholar 

  16. Wang H, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett, 2011, 11: 2644–2647

    Article  Google Scholar 

  17. Li G, Wang S, Zhang Y, et al. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv Mater, 2018, 30: 1705590

    Article  Google Scholar 

  18. Xu J, Lawson T, Fan H, et al. Updated metal compounds (MOFs, S, OH, N, C) used as cathode materials for lithium-sulfur batteries. Adv Energy Mater, 2018, 8: 1702607

    Article  Google Scholar 

  19. Tao T, Lu S, Fan Y, et al. Anode improvement in rechargeable lithium-sulfur batteries. Adv Mater, 2017, 29: 1700542

    Article  Google Scholar 

  20. Lu X, Zhang Q, Wang J, et al. High performance bimetal sulfides for lithium-sulfur batteries. Chem Eng J, 2019, 358: 955–961

    Article  Google Scholar 

  21. Wang H, Zhang W, Xu J, et al. Advances in polar materials for lithium-sulfur batteries. Adv Funct Mater, 2018, 28: 1707520

    Article  Google Scholar 

  22. Yue Y, Liang H. Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries. Adv Energy Mater, 2017, 7: 1602545

    Article  Google Scholar 

  23. Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun, 2015, 6: 5682

    Article  Google Scholar 

  24. Liu X, Cao D, Yao Y, et al. Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI3/GaN heterojunction. J Mater Chem C, 2022, 10: 1984–1990

    Article  Google Scholar 

  25. Hu C, Shu H, Shen Z, et al. Hierarchical MoO3/SnS2 core-shell nanowires with enhanced electrochemical performance for lithium-ion batteries. Phys Chem Chem Phys, 2018, 20: 17171–17179

    Article  Google Scholar 

  26. Chen Y, Sang M, Jiang W, et al. Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries. Eng Fract Mech, 2021, 253: 107866

    Article  Google Scholar 

  27. Zhao T, Shu H, Shen Z, et al. Electrochemical lithiation mechanism of two-dimensional transition-metal dichalcogenide anode materials: Intercalation versus conversion reactions. J Phys Chem C, 2019, 123: 2139–2146

    Article  Google Scholar 

  28. Zhao J, Song G Y, Yuan X C, et al. Sulfur-deficient Co9S8/Ni3S2 nanoflakes anchored on N-doped graphene nanotubes as high-performance electrode materials for asymmetric supercapacitors. Sci China Tech Sci, 2020, 63: 675–685

    Article  Google Scholar 

  29. Wu H, Huang Y A, Xu F, et al. Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability. Adv Mater, 2016, 28: 9881–9919

    Article  Google Scholar 

  30. Wei K, Chen X, Zhao P, et al. Stretchable and bioadhesive supra-molecular hydrogels activated by a one-stone-two-bird postgelation functionalization method. ACS Appl Mater Interfaces, 2019, 11: 16328–16335

    Article  Google Scholar 

  31. Zhou L, Zhou J, Wang S, et al. Evaluating the tensile deformation and stress of hyperelastic material based on transparent indentation method. Mater Des, 2020, 193: 108804

    Article  Google Scholar 

  32. Chen H, Cai L, Bao C. Equivalent-energy indentation method to predict the tensile properties of light alloys. Mater Des, 2019, 162: 322–330

    Article  Google Scholar 

  33. Drakos N E, Taylor J E, Benson A J. Mass-loss in tidally stripped systems: The energy-based truncation method. Mon Not R Astron Soc, 2020, 494: 378–395

    Article  Google Scholar 

  34. Barbuy B, Chiappini C, Gerhard O. Chemodynamical history of the galactic bulge. Ann Rev Astron Astrophys, 2018, 56: 223–276

    Article  Google Scholar 

  35. Pfeiffer F. X-ray ptychography. Nat Photon, 2017, 12: 9–17

    Article  Google Scholar 

  36. Ma Z S, Wang Y, Huang Y L, et al. XPS quantification of the heterojunction interface energy. Appl Surf Sci, 2013, 265: 71–77

    Article  Google Scholar 

  37. Sun C Q. Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Prog Mater Sci, 2009, 54: 179–307

    Article  Google Scholar 

  38. Liu X, Zhang X, Bo M, et al. Coordination-resolved electron spectrometrics. Chem Rev, 2015, 115: 6746–6810

    Article  Google Scholar 

  39. Sun C Q, Sun Y, Nie Y G, et al. Coordination-resolved C—C bond length and the C 1s binding energy of carbon allotropes and the effective atomic coordination of the few-layer graphene. J Phys Chem C, 2009, 113: 16464–16467

    Article  Google Scholar 

  40. Ratnakumar B V, Smart M C, Kindler A, et al. Lithium batteries for aerospace applications: 2003 Mars Exploration Rover. J Power Sources, 2003, 119–121: 906–910

    Article  Google Scholar 

  41. Wang Y, Wang L L, Sun C Q. The 2p3/2 binding energy shift of Fe surface and Fe nanoparticles. Chem Phys Lett, 2009, 480: 243–246

    Article  Google Scholar 

  42. Wang Y, Pu Y, Ma Z, et al. Interfacial adhesion energy of lithium-ion battery electrodes. Extreme Mech Lett, 2016, 9: 226–236

    Article  Google Scholar 

  43. Wertheim G K, Riffe D M, Smith N V, et al. Electron mean free paths in the alkali metals. Phys Rev B, 1992, 46: 1955–1959

    Article  Google Scholar 

  44. Riffe D M, Wertheim G K, Citrin P H. Enhanced vibrational broadening of core-level photoemission from the surface of Na(110). Phys Rev Lett, 1991, 67: 116–119

    Article  Google Scholar 

  45. Pu Y, Wu W, Liu J, et al. A defective mof architecture threaded by interlaced carbon nanotubes for high-cycling lithium-sulfur batteries. RSC Adv, 2018, 8: 18604–18612

    Article  Google Scholar 

  46. Zhai L F, Wang B, Sun M. Solution Ph manipulates sulfur and electricity recovery from aqueous sulfide in an air-cathode fuel cell. Clean Soil Air Water, 2016, 44: 1140–1145

    Article  Google Scholar 

  47. Xiong P, Han X, Zhao X, et al. Room-temperature potassium-sulfur batteries enabled by microporous carbon stabilized small-molecule sulfur cathodes. ACS Nano, 2019, 13: 2536–2543

    Google Scholar 

  48. Lundgren E, Johansson U, Nyholm R, et al. Surface core-level shift of the Mo(110) surface. Phys Rev B, 1993, 48: 5525–5529

    Article  Google Scholar 

  49. Luo Z, Lei W, Wang X, et al. AlF3 coating as sulfur immobilizers in cathode material for high performance lithium-sulfur batteries. J Alloys Compd, 2020, 812: 152132

    Article  Google Scholar 

  50. Li Y, Zhang L, Yu J C, et al. Facet effect of copper(I) sulfide nano-crystals on photoelectrochemical properties. Prog Nat Sci-Mater Int, 2012, 22: 585–591

    Article  Google Scholar 

  51. Luan Z J, Wang Y, Wang F, et al. The surface free energy of pyrite films prepared by sulfurizing the precursive electrodeposited films. Thin Solid Films, 2011, 519: 7830–7835

    Article  Google Scholar 

  52. Wan Y, Zhang Z, Xu X, et al. Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy, 2018, 51: 786–792

    Article  Google Scholar 

  53. Kondekar N P, Boebinger M G, Woods E V, et al. In situ XPS investigation of transformations at crystallographically oriented MoS2 interfaces. ACS Appl Mater Interfaces, 2017, 9: 32394–32404

    Article  Google Scholar 

  54. Oomae H, Eguchi T, Tanaka K, et al. X-ray diffraction and x-ray photoelectron spectroscopy characterization of sulfurized tin thin films deposited by thermal evaporation. Thin Solid Films, 2018, 645: 409–416

    Article  Google Scholar 

  55. Joo P H, Yang K. Descriptors of transition metal promoters on MoS2 nanocatalysts for hydrodesulfurization: Binding energy of metal sulfides from first principles. Mol Syst Des Eng, 2019, 4: 974–982

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang or ZengSheng Ma.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972157 and 11872054) and the Natural Science Foundation of Hunan Province (Grant Nos. 2020JJ2026 and 2021JJ30643).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, G., Wang, Y., Jiang, W. et al. Interface adhesion properties characterization of sulfide electrode materials by the combination of BOLS and XPS. Sci. China Technol. Sci. 65, 1798–1807 (2022). https://doi.org/10.1007/s11431-022-2054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2054-4

Keywords

Navigation