Skip to main content
Log in

Research progress on space charge layer effect in lithium-ion solid-state battery

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The development of lithium-ion solid electrolyte provides new ideas for solving the safety problems of secondary lithium-ion batteries (LIB) and, at the same time, the improvement of energy density. However, the consequent solid-solid interfacial problems have become a typical bottleneck to the performance. It has been considered that the space charge layer (SCL) formed at the interface to balance the sharp electrochemical inherent difference of properties is one of the most important factors that affect the ion transportation along and across the interface. Its existence may hinder ion transportation and increase the interfacial impedance but may also help to provide a new percolation path for lithium ion and so to enhance the ion migration. However the mechanism of SPL formation and its regulation on ion transport is not very clear, so it has raised a lot of attention and interest from LIB researchers. The purpose of this article is to try to gain some knowledge of SCL and, at the same time to browse through the related research in recent years. Hopefully, it may help those interested in solid electrolyte development for all-solid-state lithium-ion batteries (ASSB) in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li S, Zhang S Q, Shen L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci, 2020, 7: 1903088

    Article  Google Scholar 

  2. Chai Y, Hasnain J, Bahl K, et al. Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface. Sci Adv, 2020, 6: eabb8675

    Article  Google Scholar 

  3. Wang H, An H, Shan H, et al. Research progress on interfaces of all-solid-state batteries. Acta Physico Chim Sin, 2020, 37: 2007070

    Article  Google Scholar 

  4. Chen R, Li Q, Yu X, et al. Approaching practically accessible solidstate batteries: Stability issues related to solid electrolytes and interfaces. Chem Rev, 2020, 120: 6820–6877

    Article  Google Scholar 

  5. Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy, 2016, 1: 1–7

    Article  Google Scholar 

  6. Long L, Wang S, Xiao M, et al. Polymer electrolytes for lithium polymer batteries. J Mater Chem A, 2016, 4: 10038–10069

    Article  Google Scholar 

  7. Zheng F, Kotobuki M, Song S, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources, 2018, 389: 198–213

    Article  Google Scholar 

  8. Li X, Ren Z, Norouzi Banis M, et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett, 2019, 4: 2480–2488

    Article  Google Scholar 

  9. Chen C, Ling S, Guo X, et al. Space charge layer effect in rechargeable solid state lithium batteries: Principle and perspective. Energy Storage Sci Tech, 2016, 5: 668–677

    Google Scholar 

  10. Singh M, Singh A K. Space charge layer induced superionic conduction and charge transport behaviour of “alkali carbonates and tri-doped ceria nanocomposites” for LT-SOFCs applications. Ceram Int, 2021, 47: 1218–1228

    Article  Google Scholar 

  11. Wang L, Xie R, Chen B, et al. In-situ visualization of the spacecharge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat Commun, 2020, 11: 5889–5897

    Article  Google Scholar 

  12. Katzenmeier L, Helmer S, Braxmeier S, et al. Properties of the space charge layers formed in Li-ion conducting glass ceramics. ACS Appl Mater Interfaces, 2021, 13: 5853–5860

    Article  Google Scholar 

  13. Wang H, Zhu J, Su Y, et al. Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: A review. Sci China Chem, 2021, 64: 879–898

    Article  Google Scholar 

  14. Lehovec K. Space-charge layer and distribution of lattice defects at the surface of ionic crystals. J Chem Phys, 1953, 21: 1123–1128

    Article  Google Scholar 

  15. Kliewer K L, Koehler J S. Space charge in ionic crystals. I. General approach with application to NaCl. Phys Rev, 1965, 140: A1226–A1240

    Article  Google Scholar 

  16. Wagner C. The electrical conductivity of semi-conductors involving inclusions of another phase. J Phys Chem Solids, 1972, 33: 1051–1059

    Article  Google Scholar 

  17. Jow T, Wagner J, Bruce J. The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride. J Electrochem Soc, 1979, 126: 1963–1972

    Article  Google Scholar 

  18. Maier J. Space charge regions in solid two-phase systems and their conduction contribution—I. Conductance enhancement in the system ionic conductor-‘inert’ phase and application on AgC1:Al2O3 and AgC1:SiO2. J Phys Chem Solids, 1985, 46: 309–320

    Article  Google Scholar 

  19. Maier J. Space charge regions in solid two phase systems and their conduction contribution—II contact equilibrium at the interface of two ionic conductors and the related conductivity effect. Berichte Bunsengesellschaft Phys Chem, 1985, 89: 355–362

    Article  Google Scholar 

  20. Chen C, Guo X. Space charge layer effect in solid state ion conductors and lithium batteries: Principle and perspective. Acta Chim Slov, 2016, 63: 489–495

    Article  Google Scholar 

  21. Yamada H, Bhattacharyya A, Maier J. Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina. Adv Funct Mater, 2006, 16: 525–530

    Article  Google Scholar 

  22. Duan H, Fan M, Chen W P, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for highvoltage lithium metal batteries. Adv Mater, 2019, 31: 1807789–1807795

    Article  Google Scholar 

  23. Guo X, Waser R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Prog Mater Sci, 2006, 51: 151–210

    Article  Google Scholar 

  24. Wu J F, Guo X. Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67−xTiO3. Phys Chem Chem Phys, 2017, 19: 5880–5887

    Article  Google Scholar 

  25. Badwal S, Ciacchi F T, Rajendran S, et al. An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3). Solid State Ion, 1998, 109: 167–186

    Article  Google Scholar 

  26. Guo X, Maier J. Grain boundary blocking effect in zirconia: A schottky barrier analysis. J Electrochem Soc, 2001, 148: E121

    Article  Google Scholar 

  27. Haruyama J, Sodeyama K, Han L, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem Mater, 2014, 26: 4248–4255

    Article  Google Scholar 

  28. de Klerk N J J, Wagemaker M. Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl Energy Mater, 2018, 1: 5609–5618

    Google Scholar 

  29. Brogioli D, Langer F, Kun R, et al. Space-charge effects at the Li7 La3Zr2O12/poly(ethylene oxide) interface. ACS Appl Mater Interfaces, 2019, 11: 11999–12007

    Article  Google Scholar 

  30. Usiskin R, Maier J. Interfacial effects in lithium and sodium batteries. Adv Energy Mater, 2021, 11: 2001455

    Article  Google Scholar 

  31. Pervez S A, Kim G, Vinayan B P, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers. Small, 2020, 16: 2000279–2000288

    Article  Google Scholar 

  32. Li Y, Li Z. Research progress on the cathodic interfaces of all-soild-state lithium-ion batteries. Mater China, 2020, 39: 253–260

    Google Scholar 

  33. Yamada H, Suzuki K, Nishio K, et al. Interfacial phenomena between lithium ion conductors and cathodes. Solid State Ion, 2014, 262: 879–882

    Article  Google Scholar 

  34. Tian H K, Jalem R, Gao B, et al. Electron and ion transfer across interfaces of the NASICON-type LATP solid electrolyte with electrodes in all-solid-state batteries: A density functional theory study via an explicit interface model. ACS Appl Mater Interfaces, 2020, 12: 54752–54762

    Article  Google Scholar 

  35. Tsuchiya B, Ohnishi J, Sasaki Y, et al. In situ direct lithium distribution analysis around interfaces in an all-solid-state rechargeable lithium battery by combined ion-beam method. Adv Mater Interfaces, 2019, 6: 1900100

    Article  Google Scholar 

  36. Gittleson F S, El Gabaly F. Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces. Nano Lett, 2017, 17: 6974–6982

    Article  Google Scholar 

  37. Li S, Mohamed A I, Pande V, et al. Single-ion homopolymer electrolytes with high transference number prepared by click chemistry and photoinduced metal-free atom-transfer radical polymerization. ACS Energy Lett, 2018, 3: 20–27

    Article  Google Scholar 

  38. Liu K, Li X, Cai J, et al. Design of high-voltage stable hybrid electrolyte with an ultrahigh Li transference number. ACS Energy Lett, 2021, 6: 1315–1323

    Article  Google Scholar 

  39. Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep, 2013, 3: 2261

    Article  Google Scholar 

  40. Li Y, Chen X, Dolocan A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc, 2018, 140: 6448–6455

    Article  Google Scholar 

  41. Duan H, Chen W P, Fan M, et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew Chem Int Ed, 2020, 59: 12069–12075

    Article  Google Scholar 

  42. Ruan Y, Lu Y, Huang X, et al. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3 Zr2 O12 solid-state batteries. J Mater Chem A, 2019, 7: 14565–14574

    Article  Google Scholar 

  43. Takada K. Interfacial nanoarchitectonics for solid-state lithium batteries. Langmuir, 2013, 29: 7538–7541

    Article  Google Scholar 

  44. Ohta N, Takada K, Zhang L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater, 2006, 18: 2226–2229

    Article  Google Scholar 

  45. Fingerle M, Buchheit R, Sicolo S, et al. Reaction and space charge layer formation at the LiCoO2-LiPON interface: Insights on defect formation and ion energy level alignment by a combined surface science-simulation approach. Chem Mater, 2017, 29: 7675–7685

    Article  Google Scholar 

  46. Qiu Z, Zhang Y, Xia S, et al. Research progress on interface properties of inorganic solid state lithium ion batteries. Acta Chim Sin, 2015, 73: 992–1001

    Google Scholar 

  47. Ohta N, Takada K, Sakaguchi I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun, 2007, 9: 1486–1490

    Article  Google Scholar 

  48. Xu X, Takada K, Watanabe K, et al. Self-organized core-shell structure for high-power electrode in solid-state lithium batteries. Chem Mater, 2011, 23: 3798–3804

    Article  Google Scholar 

  49. Zhao C Z, Zhang X Q, Cheng X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci USA, 2017, 114: 11069–11074

    Article  Google Scholar 

  50. Liang J Y, Zeng X X, Zhang X D, et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. J Am Chem Soc, 2018, 140: 6767–6770

    Article  Google Scholar 

  51. Fan P, Liu H, Marosz V, et al. High performance composite polymer electrolytes for lithium-ion batteries. Adv Funct Mater, 2021, 31: 2101380

    Article  Google Scholar 

  52. Zeng X X, Yin Y X, Shi Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem, 2018, 4: 298–307

    Article  Google Scholar 

  53. Liang J Y, Zeng X X, Zhang X D, et al. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable highvoltage Li-metal batteries. J Am Chem Soc, 2019, 141: 9165–9169

    Article  Google Scholar 

  54. Allcock H, Welna D, Maher A. Single ion conductors—Polyphosphazenes with sulfonimide functional groups. Solid State Ion, 2006, 177: 741–747

    Article  Google Scholar 

  55. Jones S D, Nguyen H, Richardson P M, et al. Design of polymeric zwitterionic solid electrolytes with superionic lithium transport. ACS Cent Sci, 2022, 8: 169–175

    Article  Google Scholar 

  56. Huo H, Li X, Sun Y, et al. Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy, 2020, 73: 104836

    Article  Google Scholar 

  57. Ling W, Fu N, Yue J, et al. A flexible solid electrolyte with multilayer structure for sodium metal batteries. Adv Energy Mater, 2020, 10: 1903966

    Article  Google Scholar 

  58. Zhang Q, Liu K, Liu K, et al. Study of a composite solid electrolyte made from a new pyrrolidone-containing polymer and LLZTO. J Colloid Interface Sci, 2020, 580: 389–398

    Article  Google Scholar 

  59. Zagórski J, López del Amo J M, Cordill M J, et al. Garnet-polymer composite electrolytes: New insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl Energy Mater, 2019, 2: 1734–1746

    Article  Google Scholar 

  60. Connell J G, Fuchs T, Hartmann H, et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium metal. Chem Mater, 2020, 32: 10207–10215

    Article  Google Scholar 

  61. Jiang T, He P, Wang G, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solidstate lithium batteries. Adv Energy Mater, 2020, 10: 1903376–1903385

    Article  Google Scholar 

  62. Liang C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J Electrochem Soc, 1973, 120: 1289–1292

    Article  Google Scholar 

  63. Maier J. Ionic conduction in space charge regions. Prog Solid State Chem, 1995, 23: 171–263

    Article  Google Scholar 

  64. Hood Z D, Wang H, Li Y, et al. The “filler effect”: A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes. Solid State Ion, 2015, 283: 75–80

    Article  Google Scholar 

  65. Huo H, Zhao N, Sun J, et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J Power Sources, 2017, 372: 1–7

    Article  Google Scholar 

  66. Li Z, Huang H M, Zhu J K, et al. Ionic conduction in composite polymer electrolytes: Case of PEO:Ga-LLZO composites. ACS Appl Mater Interfaces, 2019, 11: 784–791

    Article  Google Scholar 

  67. Zhang J, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28: 447–454

    Article  Google Scholar 

  68. Braun S, Yada C, Latz A. Thermodynamically consistent model for space-charge-layer formation in a solid electrolyte. J Phys Chem C, 2015, 119: 22281–22288

    Article  Google Scholar 

  69. Zhao N, Mu S, Guo X X. Physical issues in solid garnet batteries. Acta Phys Sin, 2020, 69: 228804

    Article  Google Scholar 

  70. Yamamoto K, Iriyama Y, Asaka T, et al. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew Chem Int Ed, 2010, 49: 4414–4417

    Article  Google Scholar 

  71. Nomura Y, Yamamoto K, Hirayama T, et al. Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface. Angew Chem Int Ed, 2019, 58: 5292–5296

    Article  Google Scholar 

  72. Xiang Y, Li X, Cheng Y, et al. Advanced characterization techniques for solid state lithium battery research. Mater Today, 2020, 36: 139–157

    Article  Google Scholar 

  73. Aizawa Y, Yamamoto K, Sato T, et al. In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electricfield leakage. Ultramicroscopy, 2017, 178: 20–26

    Article  Google Scholar 

  74. Zhang Y, Cao Z, Zheng F, et al. Measurement of space charge distribution for real long HV cable and uncertainties in space charge measurement. In: 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE). Guangzhou, 2019. 31–33

  75. Zhang J, Chi M, Chen Q, et al. Effect of temperature on space charge distribution in two layers of transformer oil and impregnated pressboard under DC voltage. IEEE Access, 2020, 8: 16647–16655

    Article  Google Scholar 

  76. Cheng Z, Liu M, Ganapathy S, et al. Revealing the impact of spacecharge layers on the Li-ion transport in all-solid-state batteries. Joule, 2020, 4: 1311–1323

    Article  Google Scholar 

  77. Shi S, Gao J, Liu Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin Phys B, 2016, 25: 018212

    Article  Google Scholar 

  78. Yamamoto K, Yoshida R, Sato T, et al. Nano-scale simultaneous observation of Li-concentration profile and Ti-, O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy. J Power Sources, 2014, 266: 414–421

    Article  Google Scholar 

  79. Mier-Escurra G, Rodrigo-Mor A, Vaessen P. A calibration method for acoustic space charge measurements using multilayer samples. Sensors, 2018, 18: 2508–2518

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Zhang or YaPing Du.

Additional information

This work was supported by the Special Guiding Program for Technology Innovation of Shaanxi Province (Grant No. 2022GF05-02), the National Natural Science Foundation of China (Grant No. 21971117), the Nankai University Central University Function Research Fund (Grant No. 63186005), the Tianjin Rare Earth Key Laboratory of Materials and Application (Grant No. ZB19500202), the Open Fund of State Key Laboratory of Rare Earth Resources Utilization (Grant No. RERU2019001), the Project 111 (Grant No. B18030), the Collaborative Innovation Project of Beijing-Tianjin-Hebei (Grant No. 19YFSLQY00030), the National Key R&D Program of China (Grant No. 2021YFA1202400), the Outstanding Youth of Tianjin Natural Science Foundation Project (Grant No. 20JCJQJC00130), and the Key Project of Tianjin Natural Science Foundation (Grant No. 20JCZDJC00650).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Kong, Y., Gao, K. et al. Research progress on space charge layer effect in lithium-ion solid-state battery. Sci. China Technol. Sci. 65, 2246–2258 (2022). https://doi.org/10.1007/s11431-021-2027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-2027-3

Keywords

Navigation