Skip to main content
Log in

Multiplicative Lévy noise-induced transitions in gene expression

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Gene expression is intrinsically noisy. Experimental studies have shown that random fluctuations are large bursts and heavy-tailed distributions. Therefore, this study aims to consider transition dynamics in a gene transcriptional regulatory system via the mean first exit time (MFET) and first escape probability (FEP), when the degradation rate is under multiplicative non-Gaussian Lévy fluctuations in the sense of Itô and Marcus forms. We find that, in the Marcus form case, the FEP corresponding to different stability index and noise intensity has an intersection point, whereas in the Itô form case, the turning point only occurs at stability index. Increasing the initial CI concentration is helpful for improving the likelihood of transcription in both cases. Our results also imply that larger jumps of Lévy noise and smaller noise intensity can shorten the time of state transition to boost protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dulbecco R. A turning point in cancer research: Sequencing the human genome. Science, 1986, 231: 1055–1056

    Article  Google Scholar 

  2. Thompson J F, Hayes L S, Lloyd D B. Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene, 1991, 103: 171–177

    Article  Google Scholar 

  3. Groen S C, Ćalić I, Joly-Lopez Z, et al. The strength and pattern of natural selection on gene expression in rice. Nature, 2020, 578: 572–576

    Article  Google Scholar 

  4. Smolen P, Baxter D A, Byrne J H. Frequency selectivity, multi-stability, and oscillations emerge from models of genetic regulatory systems. Am J Physiol-Cell Physiol, 1998, 274: C531–C542

    Article  Google Scholar 

  5. Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403: 339–342

    Article  Google Scholar 

  6. Lin Y T, Galla T. Bursting noise in gene expression dynamics: Linking microscopic and mesoscopic models. J R Soc Interface, 2016, 13: 20150772

    Article  Google Scholar 

  7. Chen S, Shojaie A, Witten D M. Network reconstruction from high-dimensional ordinary differential equations. J Am Statistical Assoc, 2017, 112: 1697–1707

    Article  MathSciNet  Google Scholar 

  8. Hao L, Yang Z, Bi Y. Deterministic and stochastic dynamics in a gene regulatory network mediated by miRNA. Nonlinear Dyn, 2021, 103: 2903–2916

    Article  Google Scholar 

  9. Li Y Y, Gu H G, Jia B, et al. The nonlinear mechanism for the same responses of neuronal bursting to opposite self-feedback modulations of autapse. Sci China Tech Sci, 2021, 64: 1459–1471

    Article  Google Scholar 

  10. Abkowitz J L, Catlin S N, Guttorp P. Evidence that hematopoiesis may be a stochastic process in vivo. Nat Med, 1996, 2: 190–197

    Article  Google Scholar 

  11. McAdams H H, Arkin A. It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet, 1999, 15: 65–69

    Article  Google Scholar 

  12. Swain P S, Elowitz M B, Siggia E D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA, 2002, 99: 12795–12800

    Article  Google Scholar 

  13. Ozbudak E M, Thattai M, Kurtser I, et al. Regulation of noise in the expression of a single gene. Nat Genet, 2002, 31: 69–73

    Article  Google Scholar 

  14. Karmakar R, Das A K. Effect of transcription reinitiation in stochastic gene expression. J Stat Mech, 2021, 2021(3): 033502

    Article  MathSciNet  MATH  Google Scholar 

  15. Stratonovich R L. Topics in the Theory of Random Noise. Boca Raton: CRC Press, 1967

    MATH  Google Scholar 

  16. Aumaître S, Mallick K, Pétrélis F. Effects of the low frequencies of noise on on-off intermittency. J Stat Phys, 2006, 123: 909–927

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu L, Xu W, Yang G D, et al. Reliability and control of strongly nonlinear vibro-impact system under external and parametric Gaussian noises. Sci China Tech Sci, 2020, 63: 1837–1845

    Article  Google Scholar 

  18. Liu X M, Xie H Z, Liu L G, et al. Effect of multiplicative and additive noise on genetic transcriptional regulatory mechanism. Phys A-Statist Mech its Appl, 2009, 388: 392–398

    Article  Google Scholar 

  19. Golding I, Paulsson J, Zawilski S M, et al. Real-time kinetics of gene activity in individual bacteria. Cell, 2005, 123: 1025–1036

    Article  Google Scholar 

  20. Raj A, Peskin C S, Tranchina D, et al. Stochastic mRNA synthesis in mammalian cells. PLoS Biol, 2006, 4: e309

    Article  Google Scholar 

  21. Raj A, van Oudenaarden A. Single-molecule approaches to stochastic gene expression. Annu Rev Biophys, 2009, 38: 255–270

    Article  Google Scholar 

  22. Sanchez A, Golding I. Genetic determinants and cellular constraints in noisy gene expression. Science, 2013, 342: 1188–1193

    Article  Google Scholar 

  23. Bohrer C H, Roberts E. A biophysical model of supercoiling dependent transcription predicts a structural aspect to gene regulation. BMC Biophys, 2015, 9: 2

    Article  Google Scholar 

  24. Xu Y, Feng J, Li J J, et al. Lévy noise induced switch in the gene transcriptional regulatory system. Chaos, 2013, 23: 013110

    Article  MathSciNet  Google Scholar 

  25. Xu Y, Li Y, Zhang H, et al. The switch in a genetic toggle system with Lévy noise. Sci Rep, 2016, 6: 31505

    Article  Google Scholar 

  26. Zheng Y, Serdukova L, Duan J, et al. Transitions in a genetic transcriptional regulatory system under Lévy motion. Sci Rep, 2016, 6: 29274

    Article  Google Scholar 

  27. Song Y, Xu W. Stability of a gene transcriptional regulatory system under non-Gaussian noise. Chaos Solitons Fractals, 2020, 130: 109430

    Article  MathSciNet  MATH  Google Scholar 

  28. Cai R, Chen X, Duan J, et al. Lévy noise-induced escape in an excitable system. J Stat Mech, 2017, 2017(6): 063503

    Article  MATH  Google Scholar 

  29. Cai R, Liu Y, Duan J, et al. State transitions in the Morris-Lecar model under stable Lévy noise. Eur Phys J B, 2020, 93: 38

    Article  Google Scholar 

  30. Chen X, Wu F, Duan J, et al. Most probable dynamics of a genetic regulatory network under stable Lévy noise. Appl Math Comput, 2019, 348: 425–436

    MathSciNet  MATH  Google Scholar 

  31. Wu F, Chen X, Zheng Y, et al. Lévy noise induced transition and enhanced stability in a gene regulatory network. Chaos, 2018, 28: 075510

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun X, Li X, Zheng Y. Governing equations for probability densities of Marcus stochastic differential equations with Lévy noise. Stoch Dyn, 2017, 17: 1750033

    Article  MathSciNet  MATH  Google Scholar 

  33. Cai R, He Z, Liu Y, et al. Effects of Lévy noise on the Fitzhugh-Nagumo model: A perspective on the maximal likely trajectories. J Theor Biol, 2019, 480: 166–174

    Article  MATH  Google Scholar 

  34. Hao M, Duan J, Song R, et al. Asymmetric non-Gaussian effects in a tumor growth model with immunization. Appl Math Model, 2014, 38: 4428–4444

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen H, Duan J, Li X, et al. A computational analysis for mean exit time under non-Gaussian Lévy noises. Appl Math Computation, 2011, 218: 1845–1856

    Article  MathSciNet  MATH  Google Scholar 

  36. Marcus S. Modeling and analysis of stochastic differential equations driven by point processes. IEEE Trans Inform Theor, 1978, 24: 164–172

    Article  MathSciNet  MATH  Google Scholar 

  37. Marcus S I. Modeling and approximation of stochastic differential equations driven by semimartingales. Stochastics, 1981, 4: 223–245

    Article  MathSciNet  MATH  Google Scholar 

  38. di Paola M, Falsone G. Stochastic dynamics of nonlinear systems driven by non-normal delta-correlated processes. J Appl Mech, 1993, 60: 141–148

    Article  MathSciNet  MATH  Google Scholar 

  39. Di Paola M, Falsone G. Ito and Stratonovich integrals for delta-correlated processes. Probab Eng Mech, 1993, 8: 197–208

    Article  Google Scholar 

  40. Sun X, Duan J, Li X. An alternative expression for stochastic dynamical systems with parametric Poisson white noise. Probab Eng Mech, 2013, 32: 1–4

    Article  Google Scholar 

  41. Chechkin A, Pavlyukevich I. Marcus versus Stratonovich for systems with jump noise. J Phys A-Math Theor, 2014, 47: 342001

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhan Q, Duan J, Li X. Symplectic Euler scheme for Hamiltonian stochastic differential equations driven by Levy noise. arXiv: 2006.15500

  43. Hasty J, Pradines J, Dolnik M, et al. Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA, 2000, 97: 2075–2080

    Article  Google Scholar 

  44. Wang H, Cheng X, Duan J, et al. Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise. Chaos, 2018, 28: 013121

    Article  MathSciNet  MATH  Google Scholar 

  45. Hasty J, McMillen D, Isaacs F, et al. Computational studies of gene regulatory networks: In numero molecular biology. Nat Rev Genet, 2001, 2: 268–279

    Article  Google Scholar 

  46. Xiao Y, Zeng C. Nonlocal dynamics in a gene regulatory system with tempered stable Lévy noise. Commun Nonlinear Sci Numer Simul, 2020, 84: 105178

    Article  MathSciNet  MATH  Google Scholar 

  47. Applebaum D. Lévy Processes and Sstochastic Calculus. Cambridge: Cambridge University Press, 2009

    Book  MATH  Google Scholar 

  48. Duan J. An Introduction to Stochastic Dynamics. Cambridge: Cambridge University Press, 2015

    MATH  Google Scholar 

  49. Gao T, Duan J, Li X, et al. Mean exit time and escape probability for dynamical systems driven by Lévy noises. SIAM J Sci Comput, 2014, 36: A887–A906

    Article  MATH  Google Scholar 

  50. Wang X, Duan J, Li X, et al. Numerical algorithms for mean exit time and escape probability of stochastic systems with asymmetric Lévy motion. Appl Math Comput, 2018, 337: 618–634

    MathSciNet  MATH  Google Scholar 

  51. Mooney C Z. Monte Carlo Simulation. Thousand Oaks: SAGE Publications, 1997

    Book  MATH  Google Scholar 

  52. Chambers J M, Mallows C L, Stuck B W. A method for simulating stable random variables. J Am Statistical Assoc, 1976, 71: 340–344

    Article  MathSciNet  MATH  Google Scholar 

  53. Weron R. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Stat Probability Lett, 1996, 28: 165–171

    Article  MathSciNet  MATH  Google Scholar 

  54. Iacus S M. Simulation and Inference for Stochastic Differential Equations: With R Examples. New York: Springer, 2009

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072261 and 11872305), and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No. CX2022069).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Xu, W. & Niu, L. Multiplicative Lévy noise-induced transitions in gene expression. Sci. China Technol. Sci. 65, 1700–1709 (2022). https://doi.org/10.1007/s11431-021-2020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-2020-3

Keywords

Navigation