Skip to main content
Log in

Adaptive candidate estimation-assisted multi-objective particle swarm optimization

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The selection of global best (Gbest) exerts a high influence on the searching performance of multi-objective particle swarm optimization algorithm (MOPSO). The candidates of MOPSO in external archive are always estimated to select Gbest. However, in most estimation methods, the candidates are considered as the Gbest in a fixed way, which is difficult to adapt to varying evolutionary requirements for balance between convergence and diversity of MOPSO. To deal with this problem, an adaptive candidate estimation-assisted MOPSO (ACE-MOPSO) is proposed in this paper. First, the evolutionary state information, including both the global dominance information and global distribution information of non-dominated solutions, is introduced to describe the evolutionary states to extract the evolutionary requirements. Second, an adaptive candidate estimation method, based on two evaluation distances, is developed to select the excellent leader for balancing convergence and diversity during the dynamic evolutionary process. Third, a leader mutation strategy, using the elite local search (ELS), is devised to select Gbest to improve the searching ability of ACE-MOPSO. Fourth, the convergence analysis is given to prove the theoretical validity of ACE-MOPSO. Finally, this proposed algorithm is compared with popular algorithms on twenty-four benchmark functions. The results demonstrate that ACE-MOPSO has advanced performance in both convergence and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shavazipour B, López-Ibáñez M, Miettinen K. Visualizations for decision support in scenario-based multiobjective optimization. Inf Sci, 2021, 578: 1–21

    Article  MathSciNet  Google Scholar 

  2. Gao X Z, Nalluri M S R, Kannan K, et al. Multi-objective optimization of feature selection using hybrid cat swarm optimization. Sci China Tech Sci, 2021, 64: 508–520

    Article  Google Scholar 

  3. Han H G, Zhang J C, Du S L, et al. Robust optimal control for anaerobic-anoxic-oxic reactors. Sci China Tech Sci, 2021, 64: 1485–1499

    Article  Google Scholar 

  4. Xie Y, Yang S, Wang D, et al. Dynamic transfer reference point oriented MOEA/D involving local objective-space knowledge. IEEE Trans Evol Computat, 2022, 1

  5. Hou Y, Wu Y L, Liu Z, et al. Dynamic multi-objective differential evolution algorithm based on the information of evolution progress. Sci China Tech Sci, 2021, 64: 1676–1689

    Article  Google Scholar 

  6. Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Computat, 2002, 6: 182–197

    Article  Google Scholar 

  7. Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Computat, 2007, 11: 712–731

    Article  Google Scholar 

  8. Qiao J, Li F, Yang S, et al. An adaptive hybrid evolutionary immune multi-objective algorithm based on uniform distribution selection. Inf Sci, 2020, 512: 446–470

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu X, Du Y, Jiang M, et al. Multiobjective particle swarm optimization based on network embedding for complex network community detection. IEEE Trans Comput Soc Syst, 2020, 7: 437–449

    Article  Google Scholar 

  10. Chen L, Duan H B, Fan Y M, et al. Multi-objective clustering analysis via combinatorial pigeon inspired optimization. Sci China Tech Sci, 2020, 63: 1302–1313

    Article  Google Scholar 

  11. Martínez-Morales J, Quej-Cosgaya H, Lagunas-Jiménez J, et al. Design optimization of multilayer perceptron neural network by ant colony optimization applied to engine emissions data. Sci China Tech Sci, 2019, 62: 1055–1064

    Article  Google Scholar 

  12. Das P, Das A K, Nayak J, et al. Incremental classifier in crime prediction using bi-objective particle swarm optimization. Inf Sci, 2021, 562: 279–303

    Article  MathSciNet  Google Scholar 

  13. Dong W, Zhou M C. A supervised learning and control method to improve particle swarm optimization algorithms. IEEE Trans Syst Man Cybern Syst, 2017, 47: 1135–1148

    Article  Google Scholar 

  14. Mosa M A. A novel hybrid particle swarm optimization and gravitational search algorithm for multi-objective optimization of text mining. Appl Soft Comput, 2020, 90: 106189

    Article  Google Scholar 

  15. Hu Z, Yang J, Cui H, et al. Multi-objective particle swarm optimization algorithm based on leader combination of decomposition and dominance. J Intell Fuzzy Syst, 2017, 33: 1577–1588

    Article  Google Scholar 

  16. Xiang Y, Zhou Y, Chen Z, et al. A many-objective particle swarm optimizer with leaders selected from historical solutions by using scalar projections. IEEE Trans Cybern, 2020, 50: 2209–2222

    Article  Google Scholar 

  17. Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput, 2004, 8: 256–279

    Article  Google Scholar 

  18. Feng X, Wang Y, Yu H, et al. A novel intelligence algorithm based on the social group optimization behaviors. IEEE Trans Syst Man Cybern Syst, 2018, 48: 65–76

    Article  Google Scholar 

  19. Fang H, Wang Q, Tu Y C, et al. An efficient non-dominated sorting method for evolutionary algorithms. Evolary Comput, 2008, 16: 355–384

    Article  Google Scholar 

  20. Yang L, Hu X, Li K. A vector angles-based many-objective particle swarm optimization algorithm using archive. Appl Soft Comput, 2021, 106: 107299

    Article  Google Scholar 

  21. Luo J, Huang X, Yang Y, et al. A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization. Inf Sci, 2020, 514: 166–202

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu Q, Lin Q, Chen W, et al. An external archive-guided multi-objective particle swarm optimization algorithm. IEEE Trans Cybern, 2017, 47: 2794–2808

    Article  Google Scholar 

  23. Lin Q, Liu S, Zhu Q, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans Evol Comput, 2018, 22: 32–46

    Article  Google Scholar 

  24. Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans Evol Comput, 2014, 18: 577–601

    Article  Google Scholar 

  25. Cui Y, Meng X, Qiao J. A multi-objective particle swarm optimization algorithm based on two-archive mechanism. Appl Soft Comput, 2022, 119: 108532

    Article  Google Scholar 

  26. Lin Q, Li J, Du Z, et al. A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res, 2015, 247: 732–744

    Article  MathSciNet  MATH  Google Scholar 

  27. Dai C, Wang Y, Ye M. A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci, 2015, 325: 541–557

    Article  Google Scholar 

  28. Liu X F, Zhou Y R, Yu X, et al. Dual-archive-based particle swarm optimization for dynamic optimization. Appl Soft Comput, 2019, 85: 105876

    Article  Google Scholar 

  29. Al Moubayed N, Petrovski A, McCall J. D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces. Evolary Comput, 2014, 22: 47–77

    Article  Google Scholar 

  30. Han H, Lu W, Qiao J. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods. IEEE Trans Cybern, 2017, 47: 2754–2767

    Article  Google Scholar 

  31. Hu W, Yen G G. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput, 2015, 19: 1–18

    Article  Google Scholar 

  32. Li L, Wang W, Xu X. Multi-objective particle swarm optimization based on global margin ranking. Inf Sci, 2017, 375: 30–47

    Article  Google Scholar 

  33. Wu B, Hu W, Hu J, et al. Adaptive multiobjective particle swarm optimization based on evolutionary state estimation. IEEE Trans Cybern, 2021, 51: 3738–3751

    Article  Google Scholar 

  34. Helwig S, Branke J, Mostaghim S. Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans Evol Comput, 2013, 17: 259–271

    Article  Google Scholar 

  35. Li M, Yang S, Liu X. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans Evol Comput, 2014, 18: 348–365

    Article  Google Scholar 

  36. Hu W, Yen G G, Luo G. Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system. IEEE Trans Cybern, 2017, 47: 1446–1459

    Article  Google Scholar 

  37. Fan S K S, Chang J M, Chuang Y C. A new multi-objective particle swarm optimizer using empirical movement and diversified search strategies. Eng Optimiz, 2015, 47: 750–770

    Article  Google Scholar 

  38. Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolary Comput, 2000, 8: 173–195

    Article  Google Scholar 

  39. Zhang Q, Zhou A, Jin Y. RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput, 2008, 12: 41–63

    Article  Google Scholar 

  40. Huband S, Hingston P, Barone L, et al. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput, 2006, 10: 477–506

    Article  Google Scholar 

  41. Tian Y, Cheng R, Zhang X, et al. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag, 2017, 12: 73–87

    Article  Google Scholar 

  42. Bosman P A N, Thierens D. The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evol Comput, 2003, 7: 174–188

    Article  Google Scholar 

  43. Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans Evol Comput, 1999, 3: 257–271

    Article  Google Scholar 

  44. Li M, Yang S, Liu X. Bi-goal evolution for many-objective optimization problems. Artif Intell, 2015, 228: 45–65

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongGui Han.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61890930-5, 61903010, 62021003, and 62125301), the National Key Research and Development Project (Grant No. 2018YFC1900800-5), Beijing Natural Science Foundation (Grant No. KZ202110005009), and Beijing Outstanding Young Scientist Program (Grant No. BJJWZYJH 01201910005020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Zhang, L., Hou, Y. et al. Adaptive candidate estimation-assisted multi-objective particle swarm optimization. Sci. China Technol. Sci. 65, 1685–1699 (2022). https://doi.org/10.1007/s11431-021-2018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-2018-x

Keywords

Navigation