Skip to main content
Log in

Semi-custom methodology to fabricate transmission electron microscopy chip for in situ characterization of nanodevices and nanomaterials

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The fabrication of nanodevices on the delicate membrane window of the TEM (transmission electron microscopy) chip has the risk of breakage failure, limiting in-depth research in this area. This work proposed a methodology to address this issue, enabling secure in-situ transmission electron microscopic observation of many devices and materials that would otherwise be difficult to achieve. Combining semi-custom TEM chip design and front-side protected release technology, a variety of nanodevices were successfully fabricated onto the window membrane of the TEM chip and studied in situ. Moreover, the pressure tolerance of window membrane was investigated and enhanced with a reinforcing structure. As an example of typical applications, MoS2 devices on the TEM chip have been fabricated and electron beam-induced gate modulation and irradiation damage effects, have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creemer J F, Helveg S, Hoveling G H, et al. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy, 2008, 108: 993–998

    Article  Google Scholar 

  2. Espinosa H D, Bernal R A, Filleter T. In situ TEM electromechanical testing of nanowires and nanotubes. Small, 2012, 8: 3233–3252

    Article  Google Scholar 

  3. Ramachandramoorthy R, Bernal R, Espinosa H D. Pushing the envelope of in situ transmission electron microscopy. ACS Nano, 2015, 9: 4675–4685

    Article  Google Scholar 

  4. Taheri M L, Stach E A, Arslan I, et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy, 2016, 170: 86–95

    Article  Google Scholar 

  5. Wu J, Shan H, Chen W, et al. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv Mater, 2016, 28: 9686–9712

    Article  Google Scholar 

  6. Dai S, Gao W, Zhang S, et al. Transmission electron microscopy with atomic resolution under atmospheric pressures. MRS Commun, 2017, 7: 798–812

    Article  Google Scholar 

  7. Jiang Y, Zhang Z, Yuan W, et al. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res, 2017, 11: 42–67

    Article  Google Scholar 

  8. He B, Zhang Y, Liu X, et al. In-situ transmission electron microscope techniques for heterogeneous catalysis. ChemCatChem, 2020, 12: 1853–1872

    Article  Google Scholar 

  9. Zhang C, Firestein K L, Fernando J F S, et al. Recent progress of in situ transmission electron microscopy for energy materials. Adv Mater, 2020, 32: 1904094

    Article  Google Scholar 

  10. Zhang Y Z, Bu Y Q, Fang X Y, et al. A compact design of four-degree-of-freedom transmission electron microscope holder for quasi-four-dimensional characterization. Sci China Tech Sci, 2020, 63: 1272–1279

    Article  Google Scholar 

  11. Creemer J F, Helveg S, Kooyman P J, et al. A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J Microelectromech Syst, 2010, 19: 254–264

    Article  Google Scholar 

  12. Ross F M. Opportunities and challenges in liquid cell electron microscopy. Science, 2015, 350: 1490

    Article  Google Scholar 

  13. Wu F, Yao N. Advances in windowed gas cells for in-situ TEM studies. Nano Energy, 2015, 13: 735–756

    Article  Google Scholar 

  14. Liao H G, Zheng H. Liquid cell transmission electron microscopy. Annu Rev Phys Chem, 2016, 67: 719–747

    Article  Google Scholar 

  15. Kim B H, Yang J, Lee D, et al. Liquid-phase transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv Mater, 2018, 30: 1703316

    Article  Google Scholar 

  16. Pu S, Gong C, Robertson A W. Liquid cell transmission electron microscopy and its applications. R Soc Open Sci, 2020, 7: 191204

    Article  Google Scholar 

  17. Spies M, Sadre Momtaz Z, Lähnemann J, et al. Correlated and in-situ electrical transmission electron microscopy studies and related membrane-chip fabrication. Nanotechnology, 2020, 31: 472001

    Article  Google Scholar 

  18. Ye F, Xu M, Dai S, et al. In situ TEM studies of catalysts using windowed gas cells. Catalysts, 2020, 10: 779

    Article  Google Scholar 

  19. Hultman L, Robertsson A, Hentzell H T G, et al. Crystallization of amorphous silicon during thin-film gold reaction. J Appl Phys, 1987, 62: 3647–3655

    Article  Google Scholar 

  20. Jang M H, Agarwal R, Nukala P, et al. Observing oxygen vacancy driven electroforming in Pt-TiO2-Pt device via strong metal support interaction. Nano Lett, 2016, 16: 2139–2144

    Article  Google Scholar 

  21. Meister S, Schoen D T, Topinka M A, et al. Void formation induced electrical switching in phase-change nanowires. Nano Lett, 2008, 8: 4562–4567

    Article  Google Scholar 

  22. Kumar P, Horwath J P, Foucher A C, et al. Direct visualization of out-of-equilibrium structural transformations in atomically thin chalcogenides. npj 2D Mater Appl, 2020, 4: 16

    Article  Google Scholar 

  23. Inani H, Shin D H, Madsen J, et al. Step-by-step atomic insights into structural reordering from 2D to 3D MoS2. Adv Funct Mater, 2021, 31: 2008395

    Article  Google Scholar 

  24. Almeida T P, McGrouther D, Pivak Y, et al. Preparation of high-quality planar FeRh thin films for in situ TEM investigations. J Phys-Conf Ser, 2017, 903: 012022

    Article  Google Scholar 

  25. Gong Y, Zhang J, Jiang L, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J Am Chem Soc, 2017, 139: 4274–4277

    Article  Google Scholar 

  26. Vijayan S, Jinschek J R, Kujawa S, et al. Focused ion beam preparation of specimens for micro-electro-mechanical system-based transmission electron microscopy heating experiments. Microsc Microanal, 2017, 23: 708–716

    Article  Google Scholar 

  27. Sun M, Li X, Tang Z, et al. Constant-rate dissolution of InAs nanowires in radiolytic water observed by in situ liquid cell TEM. Nanoscale, 2018, 10: 19733–19741

    Article  Google Scholar 

  28. Gorji S, Kashiwar A, Mantha L S, et al. Nanowire facilitated transfer of sensitive TEM samples in a FIB. Ultramicroscopy, 2020, 219: 113075

    Article  Google Scholar 

  29. Textor M, de Jonge N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Lett, 2018, 18: 3313–3321

    Article  Google Scholar 

  30. Boston R, Schnepp Z, Nemoto Y, et al. In situ TEM observation of a microcrucible mechanism of nanowire growth. Science, 2014, 344: 623–626

    Article  Google Scholar 

  31. Tanta R, Kanne T, Amaduzzi F, et al. Morphology and composition of oxidized InAs nanowires studied by combined Raman spectroscopy and transmission electron microscopy. Nanotechnology, 2016, 27: 305704

    Article  Google Scholar 

  32. Song B, He K, Yuan Y, et al. In situ study of nucleation and growth dynamics of Au nanoparticles on MoS2 nanoflakes. Nanoscale, 2018, 10: 15809–15818

    Article  Google Scholar 

  33. Huang X, Farra R, Schlögl R, et al. Growth and termination dynamics of multiwalled carbon nanotubes at near ambient pressure: An in situ transmission electron microscopy study. Nano Lett, 2019, 19: 5380–5387

    Article  Google Scholar 

  34. Munch U, Brand O, Paul O, et al. Metal film protection of CMOS wafers against KOH. In: Proceedings of the International Conference on Micro Electro Mechanical Systems (MEMS). Miyazaki, 2000. 608–613

  35. Canavese G, Marasso S L, Quaglio M, et al. Polymeric mask protection for alternative KOH silicon wet etching. J Micromech Microeng, 2007, 17: 1387–1393

    Article  Google Scholar 

  36. Marsi N, Majlis B Y, Mohd-Yasin F, et al. ProTEK PSB as biotechnology photosensitive protection mask on 3C-SiC-on-Si in MEMS sensor. IOP Conf Ser-Mater Sci Eng, 2016, 160: 012093

    Article  Google Scholar 

  37. Brugger J, Beljakovic G, Despont M, et al. Low-cost PDMS seal ring for single-side wet etching of MEMS structures. Sens Actuat A-Phys, 1998, 70: 191–194

    Article  Google Scholar 

  38. Xu S Y, Xu J, Tian M L. A low cost platform for linking transport properties to the structure of nanomaterials. Nanotechnology, 2006, 17: 1470–1475

    Article  Google Scholar 

  39. Wang Z, Yang F, Han D, et al. Alternative method to fabricate microdevices on a freestanding Si3N4 window. J Vacuum Sci Tech B Nanotechnol MicroElectron-Mater Proce Measure Phenomena, 2017, 35: 041601

    Google Scholar 

  40. Yu B, Li T, Yu P, et al. An interweaved-release silicon nitride film fabrication technique for mitochondrial vesicles electron microscopy. In: Proceedings of the International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS). Savannah, 2017. 975–976

  41. Tabata O, Tsuchiya T. Reliability of MEMS. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008

    Google Scholar 

  42. Shafikov A, Schurink B, van de Kruijs R W E, et al. Strengthening ultrathin Si3N4 membranes by compressive surface stress. Sens Actuat A-Phys, 2021, 317: 112456

    Article  Google Scholar 

  43. Pan R, Yang Y, Wang Y, et al. Nanocracking and metallization doubly defined large-scale 3D plasmonic sub-10 nm-gap arrays as extremely sensitive SERS substrates. Nanoscale, 2018, 10: 3171–3180

    Article  Google Scholar 

  44. Yang Y, Pan R, Tian S, et al. Plasmonic hybrids of MoS2 and 10-nm nanogap arrays for photoluminescence enhancement. Micromachines, 2020, 11: 1109

    Article  Google Scholar 

  45. Li H, Liu C, Zhang Y, et al. Electron radiation effects on the structural and electrical properties of MoS2 field effect transistors. Nanotechnology, 2019, 30: 485201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiHong Li.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0200802), and the National Natural Science Fundation of China (Grant No. 11890672).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Sun, M., Pan, R. et al. Semi-custom methodology to fabricate transmission electron microscopy chip for in situ characterization of nanodevices and nanomaterials. Sci. China Technol. Sci. 65, 817–825 (2022). https://doi.org/10.1007/s11431-021-1980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1980-1

Keywords

Navigation