Skip to main content
Log in

Dynamics and synchronization of a complex-valued star network

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Complex networks have been extensively investigated in recent years. However, the dynamics, especially chaos and bifurcation, of the complex-valued complex network are rarely studied. In this paper, a star network of coupled complex-valued van der Pol oscillators is proposed to reveal the mechanism of star coupling. By the aid of bifurcation diagram, Lyapunov exponent spectrum and phase portrait in this study, chaos, hyper-chaos, and multi-existing chaotic attractors are observed from the star network, although there are only periodic states in a complex-valued van der Pol oscillator. Complexity versus coupling strength and nonlinear coefficient shows that the bigger the network size, the larger the parameter range within the chaotic (hyper-chaotic) region. It is revealed that the chaotic bifurcation path is highly robust against the size variation of the star network, and it always evolves to chaos directly from period-1 and quasi-periodic states, respectively. Moreover, the coexistence of chaotic phase synchronization and complete synchronization among the peripherals is also found from the star network, which is a symmetry-breaking phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barabási A L, Albert R, Jeong H. Scale-free characteristics of random networks: The topology of the world-wide web. Phys A-Stat Mech its Appl, 2000, 281: 69–77

    Article  Google Scholar 

  2. Strogatz S H. Exploring complex networks. Nature, 2001, 410: 268–276

    Article  MATH  Google Scholar 

  3. Rampurkar V, Pentayya P, Mangalvedekar H A, et al. Cascading failure analysis for indian power grid. IEEE Trans Smart Grid, 2016, 7: 1951–1960

    Article  Google Scholar 

  4. Hirose A. Dynamics of fully complex-valued neural networks. Electron Lett, 1992, 28: 1492–1494

    Article  Google Scholar 

  5. Lv M, Ma J, Yao Y G, et al. Synchronization and wave propagation in neuronal network under field coupling. Sci China Tech Sci, 2019, 62: 448–457

    Article  Google Scholar 

  6. Dunne J A, Williams R J, Martinez N D. Food-web structure and network theory: The role of connectance and size. Proc Natl Acad Sci USA, 2002, 99: 12917–12922

    Article  Google Scholar 

  7. Fewell J H. Social insect networks. Science, 2003, 301: 1867–1870

    Article  Google Scholar 

  8. Chen G R, Wang X F, Li X. Introduction to Complex Network: Models, Structures and Dynamics. Beijing: Higher Education Press, 2015

    Google Scholar 

  9. Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512

    Article  MathSciNet  Google Scholar 

  10. Costa L F, Rodrigues F A, Travieso G, et al. Characterization of complex networks: A survey of measurements. Adv Phys, 2007, 56: 167–242

    Article  Google Scholar 

  11. Shi S, Xiao M, Rong L N, et al. Stability and bifurcation control of a neuron system under a novel fractional-order PD controller. Sci China Tech Sci, 2019, 62: 2120–2129

    Article  Google Scholar 

  12. Lin H, Wang C H, Chen C J, et al. Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans Circ Syst I, 2021, 68: 3397–3410

    MathSciNet  Google Scholar 

  13. Yang F F, Mou J, Ma C G, et al. Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application. Optics Lasers Eng, 2020, 129: 106031

    Article  Google Scholar 

  14. Bao B, Qian H, Wang J, et al. Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn, 2017, 90: 2359–2369

    Article  MathSciNet  Google Scholar 

  15. Li C B, Sprott J C, Liu Y J, et al. Offset boosting for breeding conditional symmetry. Int J Bifurcat Chaos, 2018, 28: 1850163

    Article  MathSciNet  Google Scholar 

  16. Njougouo T, Simo G R, Louodop P, et al. Dynamics of Rössler oscillators in a star network with the central node controlled by an external system. Nonlinear Dyn, 2020, 102: 2875–2885

    Article  Google Scholar 

  17. Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393: 440–442

    Article  Google Scholar 

  18. Wu C W, Chua L O. Synchronization in an array of linearly coupled dynamical systems. IEEE Trans Circ Syst I, 1995, 42: 430–447

    Article  MathSciNet  Google Scholar 

  19. Wang X F, Chen G. Synchronization in small-world dynamical networks. Int J Bifurcat Chaos, 2002, 12: 187–192

    Article  Google Scholar 

  20. Zhang Y, Wang C N, Tang J, et al. Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci China Tech Sci, 2020, 63: 2328–2338

    Article  Google Scholar 

  21. He S B, Sun K H, Wang H H. Synchronisation of fractional-order time delayed chaotic systems with ring connection. Eur Phys J Spec Top, 2016, 225: 97–106

    Article  Google Scholar 

  22. Li C G, Chen G R. Phase synchronization in small-world networks of chaotic oscillators. Phys A-Stat Mech its Appl, 2004, 341: 73–79

    Article  MathSciNet  Google Scholar 

  23. Liu J, Chen G R, Zhao X. Generalized synchronization and parameters identification of different-dimensional chaotic systems in the complex field. Fractals, 2021, 29: 2150081

    Article  Google Scholar 

  24. Zhao X, Liu J, Zhang F F, et al. Complex generalized synchronization of complex-variable chaotic systems. Eur Phys J Spec Top, 2021, 230: 2035–2041

    Article  Google Scholar 

  25. Sabarathinam S, Prasad A. Generalized synchronization in a conservative and nearly conservative systems of star network. Chaos, 2018, 28: 113107

    Article  MathSciNet  Google Scholar 

  26. Meena C, Murali K, Sinha S. Chimera states in star networks. Int J Bifurcat Chaos, 2016, 26: 1630023

    Article  MathSciNet  Google Scholar 

  27. Gibbon J D, McGuinness M J. The real and complex Lorenz equations in rotating fluids and lasers. Phys D-Nonlinear Phenom, 1982, 5: 108–122

    Article  MathSciNet  Google Scholar 

  28. Mahmoud G M, Mahmoud E E. Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn, 2010, 62: 875–882

    Article  Google Scholar 

  29. Zhao X, Liu J, Mou J, et al. Characteristics of a laser system in complex field and its complex self-synchronization. Eur Phys J Plus, 2020, 135: 1–17

    Article  Google Scholar 

  30. Sun B J, Li M, Zhang F F, et al. The characteristics and self-time-delay synchronization of two-time-delay complex Lorenz system. J Franklin Inst, 2019, 356: 334–350

    Article  MathSciNet  Google Scholar 

  31. Yang F F, Mou J, Liu J, et al. Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process, 2020, 169: 107373

    Article  Google Scholar 

  32. Xiong X Y, Shi B, Yang Y, et al. Chaotic synchronization of a distant star-type laser network with multiple optical injections. Opt Express, 2020, 28: 29064–29075

    Article  Google Scholar 

  33. Wu Z Y, Chen G R, Fu X C. Synchronization of a network coupled with complex-variable chaotic systems. Chaos, 2012, 22: 023127

    Article  MathSciNet  Google Scholar 

  34. Zhang C, Wang X Y, Unar S, et al. Finite-time synchronization of a class of nonlinear complex-valued networks with time-varying delays. Phys A-Stat Mech its Appl, 2019, 528: 120985

    Article  MathSciNet  Google Scholar 

  35. Adali T, Schreier P J, Scharf L L. Complex-valued signal processing: The proper way to deal with impropriety. IEEE Trans Signal Process, 2011, 59: 5101–5125

    Article  MathSciNet  Google Scholar 

  36. van der Pol B. A theory of the amplitude of free and forced triode vibrations. Radio Rev, 1920, 1: 701–710, 754–762

    Google Scholar 

  37. Buonomo A. The periodic solution of van der Pol’s equation. SIAM J Appl Math, 1998, 59: 156–171

    Article  MathSciNet  Google Scholar 

  38. Mahmoud G M, Farghaly A A M. Chaos control of chaotic limit cycles of real and complex van der Pol oscillators. Chaos Soliton Fract, 2004, 21: 915–924

    Article  MathSciNet  Google Scholar 

  39. Wang D, Chen Y S, Hao Z F, et al. Bifurcation analysis for vibrations of a turbine blade excited by air flows. Sci China Tech Sci, 2016, 59: 1217–1231

    Article  Google Scholar 

  40. Ueta K, Uwate Y, Nishio Y. Synchronization phenomena in complex networks of van der Pol oscillators. In: Proceedings of the RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP’17). Guam, 2017

  41. Sun K H, He S B, He Y, et al. Complexity analysis of chaotic pseudorandom sequences based on spectral entropy algorithm. Acta Phys Sin-Ch Ed, 2013, 62: 010501

    Article  Google Scholar 

  42. He S B, Sun K H, Wang H H. Complexity analysis and DSP implementation of the fractional-order lorenz hyperchaotic system. Entropy, 2015, 17: 8299–8311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 61773010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, L., Liu, J., Chen, G. et al. Dynamics and synchronization of a complex-valued star network. Sci. China Technol. Sci. 64, 2729–2743 (2021). https://doi.org/10.1007/s11431-021-1929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1929-8

Keywords

Navigation