Skip to main content
Log in

Identification of robot dynamic model and joint frictions using a baseplate force sensor

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Dynamic models play an important role in robot control and applications. The accurate identification of dynamic models has become crucial to meeting increasing performance requirements. Owing to the inertial forces and the joint frictions coupling, the identification first requires a parametrized friction model. However, the joint frictions are strongly nonlinear and vary with many factors including posture, velocity and temperature. Hence, all friction models have some deviation from the real values, which reduces the identification accuracy. This paper proposes an identification approach using a baseplate force sensor. It identifies the inertial parameters first and then computes the joint friction values by subtracting the inertial torques from the joint torques. This method has the advantage that it does not require a priori friction model. It can choose or construct a proper model to fit the real values and is thus expected to achieve high performance. Experiments on a 6-DoF robot were conducted to verify the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haddadin S, De Luca A, Albu-Schaffer A. Robot collisions: A survey on detection, isolation, and identification. IEEE Trans Robot, 2017, 33: 1292–1312

    Article  Google Scholar 

  2. Birjandi S A B, Kuhn J, Haddadin S. Observer-extended direct method for collision monitoring in robot manipulators using proprioception and IMU sensing. IEEE Robot Autom Lett, 2020, 5: 954–961

    Article  Google Scholar 

  3. Zhang S, Wang S, Jing F, et al. A sensorless hand guiding scheme based on model identification and control for industrial robot. IEEE Trans Ind Inf, 2019, 15: 5204–5213

    Article  Google Scholar 

  4. Cao R, Cheng L, Yang C G, et al. Iterative assist-as-needed control with interaction factor for rehabilitation robots. Sci China Tech Sci, 2021, 64: 836–846

    Article  Google Scholar 

  5. Atkeson C G, An C H, Hollerbach J M. Estimation of inertial parameters of manipulator loads and links. Int J Robotics Res, 1986, 5: 101–119

    Article  Google Scholar 

  6. Khalil W, Dombre E. Modeling, Identification and Control of Robots. Philadelphia: Taylor & Francis, Inc., 2002

    MATH  Google Scholar 

  7. Swevers J, Verdonck W, Schutter J D. Dynamic model identification for industrial robots. IEEE Control Syst Mag, 2007, 27: 58–71

    MathSciNet  MATH  Google Scholar 

  8. Madsen E, Rosenlund O S, Brandt D, et al. Comprehensive modeling and identification of nonlinear joint dynamics for collaborative industrial robot manipulators. Control Eng Practice, 2020, 101: 104462

    Article  Google Scholar 

  9. Gaz C, Cognetti M, Oliva A, et al. Dynamic identification of the Franka Emika panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robot Autom Lett, 2019, 4: 4147–4154

    Article  Google Scholar 

  10. Zhang B, Wu J, Wang L, et al. Accurate dynamic modeling and control parameters design of an industrial hybrid spray-painting robot. Robotics Comput-Integrated Manufacturing, 2020, 63: 101923

    Article  Google Scholar 

  11. Armstrong B. On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics. Int J Robotics Res, 1989, 8: 28–48

    Article  Google Scholar 

  12. Swevers J, Ganseman C, Tukel D B, et al. Optimal robot excitation and identification. IEEE Trans Robot Automat, 1997, 13: 730–740

    Article  Google Scholar 

  13. Gautier M, Khalil W. Exciting trajectories for the identification of base inertial parameters of robots. Int J Robotics Res, 1992, 11: 362–375

    Article  Google Scholar 

  14. Jin J, Gans N. Parameter identification for industrial robots with a fast and robust trajectory design approach. Robotics Comput-Integrated Manufacturing, 2015, 31: 21–29

    Article  Google Scholar 

  15. Ayusawa K, Rioux A, Yoshida E G, et al. Generating persistently exciting trajectory based on condition number optimization. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Singapore, 2017. 6518–6524

  16. Gautier M, Poignet P. Extended Kalman filtering and weighted least squares dynamic identification of robot. Control Eng Practice, 2001, 9: 1361–1372

    Article  Google Scholar 

  17. Ramdani N, Poignet P. Robust dynamic experimental identification of robots with set membership uncertainty. IEEE/ASME Trans Mechatron, 2005, 10: 253–256

    Article  Google Scholar 

  18. Wensing P M, Kim S, Slotine J J E. Linear matrix inequalities for physically consistent inertial parameter identification: A statistical perspective on the mass distribution. IEEE Robot Autom Lett, 2018, 3: 60–67

    Article  Google Scholar 

  19. Traversaro S, Brossette S, Escande A, et al. Identification of fully physical consistent inertial parameters using optimization on manifolds. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, 2016. 5446–5451

  20. Gautier M. Numerical calculation of the base inertial parameters of robots. J Robotic Syst, 1991, 8: 485–506

    Article  Google Scholar 

  21. Gautier M, Khalil W. Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans Robot Automat, 1990, 6: 368–373

    Article  Google Scholar 

  22. Wahrburg A, Klose S, Clever D, et al. Modeling speed-, load-, and position-dependent friction effects in strain wave gears. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Brisbane, 2018. 21–25

  23. Wolf S, Iskandar M. Extending a dynamic friction model with nonlinear viscous and thermal dependency for a motor and harmonic drive gear. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Brisbane, 2018. 783–790

  24. Iskandar M, Wolf S. Dynamic friction model with thermal and load dependency: modeling, compensation, and external force estimation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Montreal, 2019. 20–24

  25. Han Y, Wu J, Liu C, et al. An iterative approach for accurate dynamic model identification of industrial robots. IEEE Trans Robot, 2020, 36: 1577–1594

    Article  Google Scholar 

  26. Li W, Han Y, Wu J, et al. Collision detection of robots based on a force/torque sensor at the bedplate. IEEE/ASME Trans Mechatron, 2020, 25: 2565–2573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianHua Wu.

Additional information

This work was supported in part by the National Natural Science Foundation of China (Grant No. 91848106) and the Program of Shanghai Academic/Technology Research Leader (Grant No. 18XD1401700).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, W. & Xiong, Z. Identification of robot dynamic model and joint frictions using a baseplate force sensor. Sci. China Technol. Sci. 65, 30–40 (2022). https://doi.org/10.1007/s11431-021-1877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1877-7

Keywords

Navigation