Skip to main content
Log in

Atomic-level mechanism of spallation microvoid nucleation in medium entropy alloys under shock loading

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Spallation, rupture under impulsive tensile loading, is a dynamic failure process involving the collective evolution and accumulation of enormous microdamage in solids. In contrast to traditional alloys, the spallation mechanism in medium entropy alloys, the recently emerged multiprinciple and chemically disordered alloys, is poorly understood. Here we conduct molecular dynamics simulations and first principle calculations to investigate the effects of impact velocities and the local chemical order on spallation microvoid nucleation in a CrCoNi medium entropy alloy under shock wave loading. As the impact velocity increases, the microvoid nucleation site exhibits a transition from the grain boundaries to the grains to release redundant imposed energy. During the intragranular nucleation process, microvoids nucleate in the poor-Cr region with a large local nonaffine deformation, which is attributed to the weak metallic bonds in this position with sparse free electrons. For intergranular nucleation, a Franke-like dislocation source forms through the dislocation reaction, leading to enormous dislocations piling up in a narrow twin stripe, which markedly increases the local stored energy and promotes microvoid nucleation. These results shed light on the mechanism of spallation in chemically complexed medium entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopkinson B. X. A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets. Philos Trans R Soc London Ser A, 1914, 213: 437–456

    Article  Google Scholar 

  2. Curran D. Dynamic failure of solids. Phys Rep, 1987, 147: 253–388

    Article  Google Scholar 

  3. Bai Y L, Xia M, Ke F. Statistical Meso-Mechanics of Damage and Failure: How Microdamage Induces Disaster. Singapore: Springer, 2019

    Book  Google Scholar 

  4. Teng H H, Jiang Z L, Progress in multi-wave structure and stability of oblique detonations. Adv Mech, 2020, 50: 202002

    Google Scholar 

  5. Jiao W, Chen X. Review on long-rod penetration at hypervelocity. Adv Mech, 2019, 49: 312–391

    Google Scholar 

  6. Tan M, Zhang X, Bao K, et al. Interface defeat of ceramic armor. Adv Mech, 2019, 49: 392–427

    Google Scholar 

  7. Liu X F, Tian Z L, Zhang X F, et al. “Self-sharpening” tungsten high-entropy alloy. Acta Mater, 2020, 186: 257–266

    Article  Google Scholar 

  8. Bai Y L, Wang H Y, Xia M F, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales. Appl Mech Rev, 2005, 58: 372–388

    Article  Google Scholar 

  9. Meyers M A, Taylor Aimone C. Dynamic fracture (spalling) of metals. Prog Mater Sci, 1983, 28: 1–96

    Article  Google Scholar 

  10. Raj R, Ashby M F. Intergranular fracture at elevated temperature. Acta Metall, 1975, 23: 653–666

    Article  Google Scholar 

  11. Reina C, Marian J, Ortiz M. Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals. Phys Rev B, 2011, 84: 104117

    Article  Google Scholar 

  12. Fensin S J, Escobedo J P, Gray Iii G T, et al. Dynamic damage nucleation and evolution in multiphase materials. J Appl Phys, 2014, 115: 203516

    Article  Google Scholar 

  13. Marian J, Knap J, Ortiz M. Nanovoid cavitation by dislocation emission in aluminum. Phys Rev Lett, 2004, 93: 165503

    Article  Google Scholar 

  14. Meyers M A, Traiviratana S, Lubarda V A, et al. The role of dislocations in the growth of nanosized voids in ductile failure of metals. JOM, 2009, 61: 35–41

    Article  Google Scholar 

  15. Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J Eng Mater Tech, 1977, 99: 2–15

    Article  Google Scholar 

  16. Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech, 1987, 54: 525–531

    Article  MATH  Google Scholar 

  17. Huang X, Ling Z, Dai L H. Influence of surface energy and thermal effects on cavitation instabilities in metallic glasses. Mech Mater, 2019, 131: 113–120

    Article  Google Scholar 

  18. Huang X, Ling Z, Dai L H. Cavitation instabilities in bulk metallic glasses. Int J Solids Struct, 2013, 50: 1364–1372

    Article  Google Scholar 

  19. Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375–377: 213–218

    Article  Google Scholar 

  20. Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  Google Scholar 

  21. Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    Article  Google Scholar 

  22. George E P, Raabe D, Ritchie R O. High-entropy alloys. Nat Rev Mater, 2019, 4: 515–534

    Article  Google Scholar 

  23. Murty B S, Yeh J W, Ranganathan S, et al. High-Entropy Alloys. Elsevier, 2019

  24. Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun, 2019, 10: 489

    Article  Google Scholar 

  25. Liang Y X, Yang X F, Ming K S, et al. In situ observation of transmission and reflection of dislocations at twin boundary in CoCrNi alloys. Sci China Tech Sci, 2021, 64: 407–413

    Article  Google Scholar 

  26. Jia B, Liu X J, Wang H, et al. Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion. Sci China Tech Sci, 2018, 61: 179–183

    Article  Google Scholar 

  27. Huang T D, Jiang L, Zhang C L, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Sci China Tech Sci, 2018, 61: 117–123

    Article  Google Scholar 

  28. Liu J P, Chen J X, Liu T W, et al. Superior strength-ductility CoCrNi medium-entropy alloy wire. Scripta Mater, 2020, 181: 19–24

    Article  Google Scholar 

  29. Pu Z, Xie Z C, Sarmah R, et al. Spatio-temporal dynamics of jerky flow in high-entropy alloy at extremely low temperature. Philos Mag, 2021, 101: 154–178

    Article  Google Scholar 

  30. Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy. Mater Sci Eng-A, 2018, 736: 156–166

    Article  Google Scholar 

  31. Soundararajan C K, Luo H, Raabe D, et al. Hydrogen resistance of a 1 GPa strong equiatomic CoCrNi medium entropy alloy. Corrosion Sci, 2020, 167: 108510

    Article  Google Scholar 

  32. Jiang Z J, He J Y, Wang H Y, et al. Shock compression response of high entropy alloys. Mater Res Lett, 2016, 4: 226–232

    Article  Google Scholar 

  33. Li Z, Zhao S, Alotaibi S M, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Mater, 2018, 151: 424–431

    Article  Google Scholar 

  34. Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 2019, 574: 223–227

    Article  Google Scholar 

  35. Zhang R, Zhao S, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature, 2020, 581: 283–287

    Article  Google Scholar 

  36. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  MATH  Google Scholar 

  37. Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Comput Phys Commun, 2015, 197: 212–219

    Article  Google Scholar 

  38. Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat Commun, 2019, 10: 3563

    Article  Google Scholar 

  39. Falk M L, Langer J S. Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E, 1998, 57: 7192–7205

    Article  Google Scholar 

  40. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng, 2010, 18: 015012

    Article  Google Scholar 

  41. Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng, 2012, 20: 045021

    Article  Google Scholar 

  42. Stukowski A. Computational analysis methods in atomistic modeling of crystals. JOM, 2014, 66: 399–407

    Article  Google Scholar 

  43. Stukowski A, Bulatov V V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng, 2012, 20: 085007

    Article  Google Scholar 

  44. Zurek A K, Thissell W R, Johnson J N, et al. Micromechanics of spall and damage in tantalum. J Mater Processing Tech, 1996, 60: 261–267

    Article  Google Scholar 

  45. Escobedo J P, Cerreta E K, Dennis-Koller D. Effect of crystalline structure on intergranular failure during shock loading. JOM, 2014, 66: 156–164

    Article  Google Scholar 

  46. Guan P, Lu S, Spector M J B, et al. Cavitation in amorphous solids. Phys Rev Lett, 2013, 110: 1–5

    Article  Google Scholar 

  47. Huang X, Ling Z, Zhang H S, et al. How does spallation microdamage nucleate in bulk amorphous alloys under shock loading? J Appl Phys, 2011, 110: 103519

    Article  Google Scholar 

  48. Şopu D, Stukowski A, Stoica M, et al. Atomic-level processes of shear band nucleation in metallic glasses. Phys Rev Lett, 2017, 119: 195503

    Article  Google Scholar 

  49. Zeng F, Jiang M Q, Dai L H. Dilatancy induced ductile-brittle transition of shear band in metallic glasses. Proc R Soc A, 2018, 474: 20170836

    Article  Google Scholar 

  50. van de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: A user guide. Calphad, 2002, 26: 539–553

    Article  Google Scholar 

  51. Savin A, Nesper R, Wengert S, et al. ELF: The electron localization function. Angew Chem Int Ed Engl, 1997, 36: 1808–1832

    Article  Google Scholar 

  52. Nelson R, Ertural C, George J, et al. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J Comput Chem, 2020, 41: 1931–1940

    Article  Google Scholar 

  53. Lobzenko I, Shiihara Y, Iwashita T, et al. Shear softening in a metallic glass: First-principles local-stress analysis. Phys Rev Lett, 2020, 124: 085503

    Article  Google Scholar 

  54. Hassani M, Lagogianni A E, Varnik F. Probing the degree of heterogeneity within a shear band of a model glass. Phys Rev Lett, 2019, 123: 195502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Chen or LanHong Dai.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0702003), the National Natural Science Foundation of China (NSFC) (Grant Nos. 11790292, 11972346 and 11672316), the NSFC Basic Science Center Program for “Multiscale Problems in Nonlinear Mechanics” (Grant No. 11988102), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB22040302 and XDB22040303), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJSSW-JSC011), and the Science Challenge Project (Grant No. TZ2018001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Chen, Y., Wang, H. et al. Atomic-level mechanism of spallation microvoid nucleation in medium entropy alloys under shock loading. Sci. China Technol. Sci. 64, 1360–1370 (2021). https://doi.org/10.1007/s11431-021-1814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1814-y

Keywords

Navigation