Skip to main content
Log in

Phase-field modelling of spinodal decomposition with G-phase precipitation during ageing

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The duplex stainless steels (DSSs) are susceptible to thermal ageing embrittlement due to the spinodal decomposition and G-phase precipitation in the ferritic phase. This study presents a ternary (Fe-Cr-Ni) phase-field model for the simulation of spinodal decomposition with concurrent G-phase precipitation. Two Cahn-Hilliard equations and one Ginzburg-Landau equation are used in the model to describe the diffusion of Cr, Ni, and the growth of G-phase, respectively. The model is able to generate a spinodally-interconnected structure with G-phase particles near the α-α′ interfaces, similar to experimental observations. The kinetic synergy between spinodal decomposition and G-phase precipitation is discussed. The simulation results indicate that G-phase can enhance the evolution of spinodal decomposition by occupying the volume where the decomposition could otherwise occur, and that the system’s elastic strain energy is largely contributed by G-phase rather than spinodal decomposition. These results would help in better understanding the states of the materials for plant structural integrity assessment and life management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunn R. Duplex Stainless Steels: Microstructure, Properties and Applications. Sawston: Woodhead Publishing, 1997. 20–27

    Book  Google Scholar 

  2. Chung H M. Aging and life prediction of cast duplex stainless steel components. Int J Pres Ves Pip, 1992, 50: 179–213

    Article  Google Scholar 

  3. Chung H M, Leax T R. Embrittlement of laboratory and reactor aged CF3, CF8, and CF8M duplex stainless steels. Mater Sci Tech, 1990, 6: 249–262

    Article  Google Scholar 

  4. Alexander D J, Vitek J M, David S A. Long-term aging of type 308 stainless steel welds: Effects on properties and microstructure. Technical Report. ORNL. 1994

  5. Danoix F, Auger P. Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: A review. Mater Charact, 2000, 44: 177–201

    Article  Google Scholar 

  6. Shuro I, Kuo H H, Sasaki T, et al. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion. Mater Sci Eng-A, 2012, 552: 194–198

    Article  Google Scholar 

  7. Danoix F, Bas P, Massoud J P, et al. Atom probe and transmission electron microscopy study of reverted duplex stainless steels. Appl Surf Sci, 1993, 67: 348–355

    Article  Google Scholar 

  8. Mateo A, Llanes L, Anglada M, et al. Characterization of the inter-metallic G-phase in an AISI 329 duplex stainless steel. J Mater Sci, 1997, 32: 4533–4540

    Article  Google Scholar 

  9. Cicero S, Setién J, Gorrochategui I. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity. Nucl Eng Des, 2009, 239: 16–22

    Article  Google Scholar 

  10. Monnet G. Multiscale modeling of irradiation hardening: Application to important nuclear materials. J Nucl Mater, 2018, 508: 609–627

    Article  Google Scholar 

  11. Kobayashi H, Ode M, Gyoon Kim S, et al. Phase-field model for solidification of ternary alloys coupled with thermodynamic database. Scripta Mater, 2003, 48: 689–694

    Article  Google Scholar 

  12. Cahn J W. On spinodal decomposition. Acta Metall, 1961, 9: 795–801

    Article  Google Scholar 

  13. Li Y S, Zhu H, Zhang L, et al. Phase decomposition and morphology characteristic in thermal aging Fe-Cr alloys under applied strain: A phase-field simulation. J Nucl Mater, 2012, 429: 13–18

    Article  Google Scholar 

  14. Li Y S, Li S X, Zhang T Y. Effect of dislocations on spinodal decomposition in Fe-Cr alloys. J Nucl Mater, 2009, 395: 120–130

    Article  Google Scholar 

  15. Miller M K, Hyde J M, Hetherington M G, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models—I. Introduction and methodology. Acta Metall Mater, 1995, 43: 3385–3401

    Article  Google Scholar 

  16. Yan Z, Li Y, Zhou X, et al. Evolution of nanoscale Cr-rich phase in a Fe-35 at.% Cr alloy during isothermal aging. J Alloys Compd, 2017, 725: 1035–1043

    Article  Google Scholar 

  17. Pareige C, Emo J, Saillet S, et al. Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel. J Nucl Mater, 2015, 465: 383–389

    Article  Google Scholar 

  18. Miller M K, Anderson I M, Bentley J, et al. Phase separation in the Fe-Cr-Ni system. Appl Surf Sci, 1996, 94: 391–397

    Article  Google Scholar 

  19. Emo J, Pareige C, Saillet S, et al. Kinetics of secondary phase precipitation during spinodal decomposition in duplex stainless steels: A kinetic Monte Carlo model—Comparison with atom probe tomography experiments. J Nucl Mater, 2014, 451: 361–365

    Article  Google Scholar 

  20. Pareige C, Novy S, Saillet S, et al. Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years). J Nucl Mater, 2011, 411: 90–96

    Article  Google Scholar 

  21. Bottger B, Eiken J, Steinbach I. Phase field simulation of equiaxed solidification in technical alloys. Acta Mater, 2006, 54: 2697–2704

    Article  Google Scholar 

  22. Wen Y H, Lill J V, Chen S L, et al. A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys. Acta Mater, 2010, 58: 875–885

    Article  Google Scholar 

  23. Kitashima T, Harada H. A new phase-field method for simulating γ′ precipitation in multicomponent nickel-base superalloys. Acta Mater, 2009, 57: 2020–2028

    Article  Google Scholar 

  24. Wheeler A A, Boettinger W J, McFadden G B. Phase-field model for isothermal phase transitions in binary alloys. Phys Rev A, 1992, 45: 7424–7439

    Article  Google Scholar 

  25. Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. interfacial free energy. J Chem Phys, 1958, 28: 258–267

    Article  Google Scholar 

  26. Honjo M, Saito Y. Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the Cahn-Hilliard equation. ISIJ Int, 2000, 40: 914–919

    Article  Google Scholar 

  27. Mehrer H, Stolica N. Diffusion in Solid Metals and Alloys. Berlin: Springer-Verlag, 1990. 301–350

    Book  Google Scholar 

  28. Rothman S J, Nowicki L J, Murch G E. Self-diffusion in austenitic Fe-Cr-Ni alloys. J Phys F-Met Phys, 1980, 10: 383–398

    Article  Google Scholar 

  29. Wheeler A A, Boettinger W J, McFadden G B. Phase-field model of solute trapping during solidification. Phys Rev E, 1993, 47: 1893–1909

    Article  Google Scholar 

  30. Miettinen J. Thermodynamic reassessment of Fe-Cr-Ni system with emphasis on the iron-rich corner. Calphad, 1999, 23: 231–248

    Article  Google Scholar 

  31. Dinsdale A T. SGTE data for pure elements. Calphad, 1991, 15: 317–425

    Article  Google Scholar 

  32. Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys. Phys Rev E, 1999, 60: 7186–7197

    Article  Google Scholar 

  33. Kim S G. A phase-field model with antitrapping current for multi-component alloys with arbitrary thermodynamic properties. Acta Mater, 2007, 55: 4391–4399

    Article  Google Scholar 

  34. Ginzburg V L, Landau L D. On the theory of superconductivity. J Exp Theory Phys, 1950, 20: 1064–1082

    Google Scholar 

  35. Andersson J, Ågren J. Models for numerical treatment of multi-component diffusion in simple phases. J Appl Phys, 1992, 72: 1350–1355

    Article  Google Scholar 

  36. Gránásy L, Pusztai T, Börzsönyi T, et al. Phase field theory of crystal nucleation and polycrystalline growth: A review. J Mater Res, 2006, 21: 309–319

    Article  Google Scholar 

  37. COMSOL Multiphysics. Version 4.3. Stockholm: COMSOL Inc. 2012

  38. Gránásy L, Börzsönyi T, Pusztai T. Nucleation and bulk crystallization in binary phase field theory. Phys Rev Lett, 2002, 88: 206105

    Article  Google Scholar 

  39. Hamaoka T, Nomoto A, Nishida K, et al. Effects of aging temperature on G-phase precipitation and ferrite-phase decomposition in duplex stainless steel. Philos Mag, 2012, 92: 4354–4375

    Article  Google Scholar 

  40. Hyde J M, Miller M K, Hetherington M G, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models—II. Development of domain size and composition amplitude. Acta Metall Mater, 1995, 43: 3403–3413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Shen.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0702201). LIU HaiTing and MO HanXuan are acknowledged for participation in discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Shen, Y. Phase-field modelling of spinodal decomposition with G-phase precipitation during ageing. Sci. China Technol. Sci. 64, 2568–2576 (2021). https://doi.org/10.1007/s11431-020-1857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1857-3

Keywords

Navigation