Skip to main content
Log in

Ultrathin molybdenum disulfide (MoS2) film obtained in atomic layer deposition: A mini-review

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) as a flexible surface-controlled fabrication technique has attracted widespread interest in numerous nanotechnology applications, which can obtain ultrathin or two-dimensional molybdenum disulfide (2D MoS2) films. The ALD technique possesses the characteristics of precise thickness control, excellent uniformity and conformality, relying on the self-limiting surface reaction. In this mini-review, the knowledge about the fabrication mechanisms and applications of ALD preparation MoS2 films are reviewed. The surface reaction pathway about ALD synthesis MoS2 is elaborated, and the corresponding factors causing saturation adsorption are discussed Two possible growth mechanisms of ALD preparation MoS2 film based on the building blocks and MoS2 islands are compared. For both, the deposition process of MoS2 can be divided into two stages, heterogeneous deposition stage and homogeneous deposition stage. The mismatch between the as-deposited MoS2 in the heterodeposition and the lattice structure of the substrate surface is a key factor leading to the poor crystallinity of as-deposited MoS2. In addition, the extensions of ALD MoS2 technique to improve the as-deposited film quality are discussed. Finally, the applications of ALD deposited MoS2 film are summarized, and future perspectives are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samadi M, Sarikhani N, Zirak M, et al. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives. Nanoscale Horiz, 2018, 3: 90–204

    Article  Google Scholar 

  2. Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712

    Article  Google Scholar 

  3. Singh A K, Kumar P, Late D J, et al. 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Appl Mater Today, 2018, 13: 242–270

    Article  Google Scholar 

  4. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150

    Article  Google Scholar 

  5. Ahn W, Lee H, Cho Y, et al. Introduction of an Al seed layer for facile adsorption of MoCl5 during atomic layer deposition of MoS2. Phys Status Solidi A, 2020, 217: 1901042

    Article  Google Scholar 

  6. Liu H, Chen L, Zhu H, et al. Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit. Nano Res, 2020, 13: 1644–1650

    Article  Google Scholar 

  7. Mak K F, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotech, 2012, 7: 494–498

    Article  Google Scholar 

  8. Singh E, Kim K S, Yeom G Y, et al. Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl Mater Inter, 2017, 9: 3223–3245

    Article  Google Scholar 

  9. Perkins F K, Friedman A L, Cobas E, et al. Chemical vapor sensing with monolayer MoS2. Nano Lett, 2013, 13: 668–673

    Article  Google Scholar 

  10. Kalantar-zadeh K, Ou J Z. Biosensors based on two-dimensional MoS2. ACS Sens, 2016, 1: 5–16

    Article  Google Scholar 

  11. Cao X, Gan X, Lang H, et al. Anisotropic nanofriction on MoS2 with different thicknesses. Tribol Int, 2019, 134: 308–316

    Article  Google Scholar 

  12. Hao W, Marichy C, Journet C. Atomic layer deposition of stable 2D materials. 2D Mater, 2018, 6: 012001

    Article  Google Scholar 

  13. Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805

    Article  Google Scholar 

  14. Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24: 2320–2325

    Article  Google Scholar 

  15. Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520: 656–660

    Article  Google Scholar 

  16. Tan L K, Liu B, Teng J H, et al. Atomic layer deposition of a MoS2 film. Nanoscale, 2014, 6: 10584–10588

    Article  Google Scholar 

  17. Lu J, Elam J W, Stair P C. Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf Sci Rep, 2016, 71: 410–472

    Article  Google Scholar 

  18. Cremers V, Puurunen R L, Dendooven J. Conformality in atomic layer deposition: Current status overview of analysis and modelling. Appl Phys Rev, 2019, 6: 021302

    Article  Google Scholar 

  19. Kim H G, Lee H B R. Atomic layer deposition on 2D materials. Chem Mater, 2017, 29: 3809–3826

    Article  Google Scholar 

  20. Schwartzberg A M, Olynick D. Complex materials by atomic layer deposition. Adv Mater, 2015, 27: 5778–5784

    Article  Google Scholar 

  21. Jurca T, Moody M J, Henning A, et al. Low-temperature atomic layer deposition of MoS2 films. Angew Chem Int Ed, 2017, 56: 4991–4995

    Article  Google Scholar 

  22. Letourneau S, Young M J, Bedford N M, et al. Structural evolution of molybdenum disulfide prepared by atomic layer deposition for realization of large scale films in microelectronic applications. ACS Appl Nano Mater, 2018, 1: 4028–4037

    Article  Google Scholar 

  23. Jeon W, Cho Y, Jo S, et al. Wafer-scale synthesis of reliable high-mobility molybdenum disulfide thin films via inhibitor-utilizing atomic layer deposition. Adv Mater, 2017, 29: 1703031

    Article  Google Scholar 

  24. Shi M L, Chen L, Zhang T B, et al. Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small, 2017, 13: 1603157

    Article  Google Scholar 

  25. Jin Z, Shin S, Kwon D H, et al. Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate. Nanoscale, 2014, 6: 14453–14458

    Article  Google Scholar 

  26. Cadot S, Renault O, Frégnaux M, et al. A novel 2-step ALD route to ultra-thin MoS2 films on SiO2 through a surface organometallic intermediate. Nanoscale, 2017, 9: 538–546

    Article  Google Scholar 

  27. Oh S, Kim J B, Song J T, et al. Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelec-trochemical water reduction reaction. J Mater Chem A, 2017, 5: 3304–3310

    Article  Google Scholar 

  28. Yang J, Liu L. Nanotribological properties of 2-D MoS2 on different substrates made by atomic layer deposition (ALD). Appl Surf Sci, 2020, 502: 144402

    Article  Google Scholar 

  29. Mughal A J, Walter T N, Cooley K A, et al. Effect of substrate on the growth and properties of MoS2 thin films grown by plasma-enhanced atomic layer deposition. J Vacuum Sci Tech A, 2019, 37: 010907

    Article  Google Scholar 

  30. Sharma A, Verheijen M A, Wu L, et al. Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS2: Large area, thickness control and tuneable morphology. Nanoscale, 2018, 10: 8615–8627

    Article  Google Scholar 

  31. Moody M J, Henning A, Jurca T, et al. Atomic layer deposition of molybdenum oxides with tunable stoichiometry enables controllable doping of MoS2. Chem Mater, 2018, 30: 3628–3632

    Article  Google Scholar 

  32. Graniel O, Weber M, Balme S, et al. Atomic layer deposition for biosensing applications. Biosens Bioelectron, 2018, 122: 147–159

    Article  Google Scholar 

  33. Singh E, Singh P, Kim K S, et al. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl Mater Inter, 2019, 11: 11061–11105

    Article  Google Scholar 

  34. Krishnan U, Kaur M, Singh K, et al. A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct, 2019, 128: 274–297

    Article  Google Scholar 

  35. Bazaka K, Levchenko I, Lim J W M, et al. MoS2-based nanos-tructures: Synthesis and applications in medicine. J Phys D-Appl Phys, 2019, 52: 183001

    Article  Google Scholar 

  36. Nam T, Seo S, Kim H. Atomic layer deposition of a uniform thin film on two-dimensional transition metal dichalcogenides. J Vacuum Sci Tech A, 2020, 38: 030803

    Article  Google Scholar 

  37. Cai J, Han X, Wang X, et al. Atomic layer deposition of two-dimensional layered materials: Processes, growth mechanisms, and characteristics. Matter, 2020, 2: 587–630

    Article  Google Scholar 

  38. Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2: 17033

    Article  Google Scholar 

  39. Hagen D J, Pemble M E, Karppinen M. Atomic layer deposition of metals: Precursors and film growth. Appl Phys Rev, 2019, 6: 041309

    Article  Google Scholar 

  40. Shirazi M, Kessels W M M, Bol A A. Initial stage of atomic layer deposition of 2D-MoS2 on a SiO2 surface: A DFT study. Phys Chem Chem Phys, 2018, 20: 16861–16875

    Article  Google Scholar 

  41. Mackus A J M, Schneider J R, MacIsaac C, et al. Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: A review. Chem Mater, 2019, 31: 1142–1183

    Article  Google Scholar 

  42. Huang Y, Liu L, Zhao W, et al. Preparation and characterization of molybdenum disulfide films obtained by one-step atomic layer deposition method. Thin Solid Films, 2017, 624: 101–105

    Article  Google Scholar 

  43. Sreedhara M B, Gope S, Vishal B, et al. Atomic layer deposition of crystalline epitaxial MoS2 nanowall networks exhibiting superior performance in thin-film rechargeable Na-ion batteries. J Mater Chem A, 2018, 6: 2302–2310

    Article  Google Scholar 

  44. Tian Z L, Zhao D H, Liu H, et al. Optimization of defects in large-area synthetic MoS2 thin films by CS2 treatment for switching and sensing devices. ACS Appl Nano Mater, 2019, 2: 7810–7818

    Article  Google Scholar 

  45. Yue C, Wang Y, Liu H, et al. Controlled growth of MoS2 by atomic layer deposition on patterned gold pads. J Cryst Growth, 2020, 541: 125683

    Article  Google Scholar 

  46. Nandi D K, Sen U K, Choudhury D, et al. Atomic layer deposited MoS2 as a carbon and binder free anode in Li-ion battery. Electrochim Acta, 2014, 146: 706–713

    Article  Google Scholar 

  47. Pyeon J J, Kim S H, Jeong D S, et al. Wafer-scale growth of MoS2 thin films by atomic layer deposition. Nanoscale, 2016, 8: 10792–10798

    Article  Google Scholar 

  48. Jang Y, Yeo S, Lee H B R, et al. Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition. Appl Surf Sci, 2016, 365: 160–165

    Article  Google Scholar 

  49. Nandi D K, Sahoo S, Sinha S, et al. Highly uniform atomic layer-deposited MoS2@3D-Ni-foam: A novel approach to prepare an electrode for supercapacitors. ACS Appl Mater Inter, 2017, 9: 40252–40264

    Article  Google Scholar 

  50. Shin S, Jin Z, Kwon D H, et al. High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. Langmuir, 2015, 31: 1196–1202

    Article  Google Scholar 

  51. Kwon D H, Jin Z, Shin S, et al. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution. Nanoscale, 2016, 8: 7180–7188

    Article  Google Scholar 

  52. Zhang T, Wang Y, Xu J, et al. High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition. 2D Mater, 2018, 5: 015028

    Article  Google Scholar 

  53. Mattinen M, Hatanpää T, Sarnet T, et al. Atomic layer deposition of crystalline MoS2 thin films: New molybdenum precursor for low-temperature film growth. Adv Mater Interfaces, 2017, 4: 1700123

    Article  Google Scholar 

  54. Mane A U, Letourneau S, Mandia D J, et al. Atomic layer deposition of molybdenum disulfide films using MoF6 and H2S. J Vacuum Sci Tech A, 2018, 36: 01A125

    Article  Google Scholar 

  55. Kim Y, Choi D, Woo W J, et al. Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor. Appl Surf Sci, 2019, 494: 591–599

    Article  Google Scholar 

  56. Sopha H, Tesfaye A T, Zazpe R, et al. ALD growth of MoS2 nanosheets on TiO2 nanotube supports. FlatChem, 2019, 17: 100130

    Article  Google Scholar 

  57. Shen C, Raza M H, Amsalem P, et al. Morphology-controlled MoS2 by low-temperature atomic layer deposition. Nanoscale, 2020, 12: 20404–20412

    Article  Google Scholar 

  58. Kalanyan B, Beams R, Katz M B, et al. MoS2 thin films from a (NtBu)2(NMe2)2 Mo and 1-propanethiol atomic layer deposition process. J Vacuum Sci Tech A, 2019, 37: 010901

    Article  Google Scholar 

  59. Puurunen R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J Appl Phys, 2005, 97: 121301

    Article  Google Scholar 

  60. Puurunen R L. A short history of atomic layer deposition: Tuomo suntola’s atomic layer epitaxy. Chem Vapor Depos, 2014, 20: 332–344

    Article  Google Scholar 

  61. Guerra-Nuñez C, Döbeli M, Michler J, et al. Reaction and growth mechanisms in Al2O3 deposited via atomic layer deposition: Elucidating the hydrogen source. Chem Mater, 2017, 29: 8690–8703

    Article  Google Scholar 

  62. Kim H J, Jeon H, Shin Y H. H2S adsorption process on (0001) α-quartz SiO2 surfaces. J Appl Phys, 2018, 124: 115301

    Article  Google Scholar 

  63. Zhao R, Guo Z, Wang X. Surface chemistry during atomic-layer deposition of nickel sulfide from nickel amidinate and H2S. J Phys Chem C, 2018, 122: 21514–21520

    Article  Google Scholar 

  64. Zhao R, Wang X. Initial growth and agglomeration during atomic layer deposition of nickel sulfide. Chem Mater, 2019, 31: 445–453

    Article  Google Scholar 

  65. Li H, Zhao R, Zhu J, et al. Organosulfur precursor for atomic layer deposition of high-quality metal sulfide films. Chem Mater, 2020, 32: 8885–8894

    Article  Google Scholar 

  66. Shirazi M, Kessels W M M, Bol A A. Strategies to facilitate the formation of free standing MoS2 nanolayers on SiO2 surface by atomic layer deposition: A DFT study. APL Mater, 2018, 6: 111107

    Article  Google Scholar 

  67. Joe J, Bae C, Kim E, et al. Mixed-phase (2H and 1T) MoS2 catalyst for a highly efficient and stable Si photocathode. Catalysts, 2018, 8: 580

    Article  Google Scholar 

  68. Huang Y, Liu L. Recent progress in atomic layer deposition of molybdenum disulfide: A mini review. Sci China Mater, 2019, 62: 913–924

    Article  Google Scholar 

  69. Mattinen M, King P J, Popov G, et al. Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditions. 2D Mater, 2020, 7: 011003

    Article  Google Scholar 

  70. Yang J, Liu L. Trickle flow aided atomic layer deposition (ALD) strategy for ultrathin molybdenum disulfide (MoS2) synthesis. ACS Appl Mater Inter, 2019, 11: 36270–36277

    Article  Google Scholar 

  71. Lim Y F, Priyadarshi K, Bussolotti F, et al. Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier. ACS Nano, 2018, 12: 1339–1349

    Article  Google Scholar 

  72. Motola M, Baudys M, Zazpe R, et al. 2D MoS2 nanosheets on 1D anodic TiO2 nanotube layers: An efficient co-catalyst for liquid and gas phase photocatalysis. Nanoscale, 2019, 11: 23126–23131

    Article  Google Scholar 

  73. Huang Y, Liu L, Liu X. Modulated electrochemical oxygen evolution catalyzed by MoS2 nanoflakes from atomic layer deposition. Nanotechnology, 2019, 30: 095402

    Article  Google Scholar 

  74. Ho T A, Bae C, Joe J, et al. Heterojunction photoanode of atomic-layer-deposited MoS2 on single-crystalline CdS nanorod arrays. ACS Appl Mater Inter, 2019, 11: 37586–37594

    Article  Google Scholar 

  75. Cao Y, Wu Y, Badie C, et al. Electrocatalytic performance of titania nanotube arrays coated with MoS2 by ALD toward the hydrogen evolution reaction. ACS Omega, 2019, 4: 8816–8823

    Article  Google Scholar 

  76. MacIsaac C, Schneider J R, Closser R G, et al. Atomic and molecular layer deposition of hybrid Mo-thiolate thin films with enhanced catalytic activity. Adv Funct Mater, 2018, 28: 1800852

    Article  Google Scholar 

  77. Xiong D, Zhang Q, Li W, et al. Atomic-layer-deposited ultrafine MoS2 nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution. Nanoscale, 2017, 9: 2711–2717

    Article  Google Scholar 

  78. Vandalon V, Sharma A, Perrotta A, et al. Polarized Raman spectroscopy to elucidate the texture of synthesized MoS2. Nanoscale, 2019, 11: 22860–22870

    Article  Google Scholar 

  79. Liu L, Ma K, Xu X, et al. MoS2-ReS2 heterojunctions from a bimetallic co-chamber feeding atomic layer deposition for ultrasensitive MiRNA-21 detection. ACS Appl Mater Inter, 2020, 12: 29074–29084

    Google Scholar 

  80. Lv J, Yang J, Jiao S, et al. Ultrathin quasibinary heterojunctioned ReS2/MoS2 film with controlled adhesion from a bimetallic co-feeding atomic layer deposition. ACS Appl Mater Inter, 2020, 12: 43311–43319

    Article  Google Scholar 

  81. Song M, Tan H, Li X, et al. Atomic-layer-deposited amorphous MoS2 for durable and flexible Li-O2 batteries. Small Methods, 2020, 4: 1900274

    Article  Google Scholar 

  82. Zhang T, Liu H, Wang Y, et al. Fast-response inverter arrays built on wafer-scale MoS2 by atomic layer deposition. Phys Status Solidi RRL, 2019, 13: 1900018

    Article  Google Scholar 

  83. Ho T A, Bae C, Lee S, et al. Edge-on MoS2 thin films by atomic layer deposition for understanding the interplay between the active area and hydrogen evolution reaction. Chem Mater, 2017, 29: 7604–7614

    Article  Google Scholar 

  84. Huang Y, Liu L, Yang J, et al. Nanotribological properties of ALD-made ultrathin MoS2 influenced by film thickness and scanning velocity. Langmuir, 2019, 35: 3651–3657

    Article  Google Scholar 

  85. Valdivia A, Tweet D J, Conley John F. J. Atomic layer deposition of two dimensional MoS2 on 150 mm substrates. J Vacuum Sci Tech A, 2016, 34: 021515

    Article  Google Scholar 

  86. Jiao S, Liu L, Wang J, et al. A novel biosensor based on molybdenum disulfide (MoS2) modified porous anodic aluminum oxide nanochannels for ultrasensitive microRNA-155 detection. Small, 2020, 16: 2001223

    Article  Google Scholar 

  87. Li X, Puttaswamy M, Wang Z, et al. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure. Appl Surf Sci, 2017, 422: 536–543

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51822501), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20170023, BK20181274), the Fundamental Research Funds for the Central Universities (Grant Nos. 3202006301, 3202006403), the Qing Lan Project of Jiangsu Province, the International Foundation for Science, Stockholm, Sweden, the Organization for the Prohibition of Chemical Weapons, The Hague, Netherlands, through a grant to Lei Liu (F/4736-2), the grants from Top 6 High-Level Talents Program of Jiangsu Province (Grant No. 2017-GDZB-006, Class A), the Tribology Science Fund of State Key Laboratory of Tribology (Grant No. SKLTKF15A11), Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing, Central South University (Grant No. Kfkt2016-11), Open Research Fund of State Key Laboratory of Fire Science (Grant No. HZ2017-KF05) and Open Research Fund of State Key Laboratory of Solid Lubrication (Grant No. LSL-1607).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Xing, Y., Wu, Z. et al. Ultrathin molybdenum disulfide (MoS2) film obtained in atomic layer deposition: A mini-review. Sci. China Technol. Sci. 64, 2347–2359 (2021). https://doi.org/10.1007/s11431-020-1833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1833-4

Keywords

Navigation