Skip to main content
Log in

Configuration analysis of a chain-type reconfigurable modular robot inspired by normal alkane

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Normal alkane is an unbranched alkane whose structural formula is H-CH2-CH2-⋯-CH2-⋯-CH2-H, which can be regarded as a reconfigurable chain-type structure composed of -CH2- modules. Inspired by normal alkane, a normal-alkane-like re-configurable modular robot (NAR) is proposed. The module consists of two differential gear trains mounted orthogonally. Each differential gear train contains two input degrees of freedom and two output degrees of freedom. Due to the genderless interface design, multiple modules can be assembled into chain-type configuration. With the genderless interfaces and flexible degrees of freedom, NAR can be reconfigured into different dimensions of spatial configuration. The bond matrix is used to describe the configuration, which represents the bond attitude of the adjacent connected modules. In addition, full interconnected geometric feature (FIGF) algorithm is proposed for non-isomorphic configuration enumeration and judgment. The configurations with three modules are simulated and the results verify the feasibility of the algorithm. Finally, a prototype with three modules is fabricated and the configuration motion sequence is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murata S, Yoshida E, Kamimura A, et al. M-TRAN: Self-re-configurable modular robotic system. IEEE/ASME Trans Mechatron, 2002, 7: 431–441

    Article  Google Scholar 

  2. Yim M, Shen W, Salemi B, et al. Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot Automat Mag, 2007, 14: 43–52

    Article  Google Scholar 

  3. Belke C H, Paik J. Mori: A modular origami robot. IEEE/ASME Trans Mechatron, 2017, 22: 2153–2164

    Article  Google Scholar 

  4. Tan N, Hayat A A, Elara M R, et al. A framework for taxonomy and evaluation of self-reconfigurable robotic systems. IEEE Access, 2020, 8: 13969–13986

    Article  Google Scholar 

  5. Moubarak P, Ben-Tzvi P. Modular and reconfigurable mobile robotics. Robotics Autonomous Syst, 2012, 60: 1648–1663

    Article  Google Scholar 

  6. Chennareddy S S R, Agrawal A, Karuppiah A. Modular self-re-configurable robotic systems: a survey on hardware architectures. J Robotics, 2017, 2017: 1–19

    Google Scholar 

  7. Chen I, Yim M. Modular robots. In: Siciliano B, Khatib O (Eds). Springer Handbook of Robotics. 2nd Ed. Switzerland: Springer International Publishing, 2016. 531–542

    Chapter  Google Scholar 

  8. Fukuda T, Nakagawa S, Kawauchi Y, et al. Self organizing robots based on cell structures — CKBot. In: IEEE International Conference on Intelligent Robots and Systems. Tokyo, 1988. 145–150

  9. Park M, Yim M. Distributed control and communication fault tolerance for the CKBot. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. London: King’s College of London IEEE, 2009. 682–688

    Google Scholar 

  10. Yim M, Duff D, Roufas K. PolyBot: A modular reconfigurable robot. In: The Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, 2000. 514–520

  11. Yim M, Ying Zhang M, Roufas K, et al. Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans Mechatron, 2002, 7: 442–451

    Article  Google Scholar 

  12. Park M, Chitta S, Teichman A, et al. Automatic configuration recognition methods in modular robots. Int J Robotics Res, 2008, 27: 403–421

    Article  Google Scholar 

  13. Liu J G, Ma S G, Wang Y C, et al. Network-based reconfiguration routes for a self-reconfigurable robot. Sci China Ser F-Inf Sci, 2008, 51: 1532–1546

    Article  Google Scholar 

  14. Li B, Ma S, Liu J, et al. Amoeba-I: A shape-shifting modular robot for urban search and rescue. Adv Robot, 2009, 23: 1057–1083

    Article  Google Scholar 

  15. Nakagaki K, Dementyev A, Follmer S, et al. ChainFORM: A linear integrated modular hardware system for shape changing interfaces. In: The Proceedings of the 29th Annual Symposium on User Interface Software and Technology. Tokyo, 2016. 87–96

  16. Nakagaki K, Follmer S, Dementyev A, et al. Designing line-based shape-changing interfaces. IEEE Pervasive Comput, 2017, 16: 36–46

    Article  Google Scholar 

  17. Liu J, Zhang X, Zhang K, et al. Configuration analysis of a re-configurable Rubik’s snake robot. Proc Inst Mech Eng Part C-J Mech Eng Sci, 2019, 233: 3137–3154

    Article  Google Scholar 

  18. Romanishin J W, Gilpin K, Rus D. M-blocks: Momentum driven, magnetic modular robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, 2013. 4288–4295

  19. Romanishin J W, Gilpin K, Claici S, et al. 3D M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions. In: The Proceedings of IEEE International Conference on Robotics and Automation. Washington, 2015. 1925–1932

  20. Zykov V, Chan A, Lipson H. Molecubes: An open-source modular robotics kit. In: IROS workshop on self-reconfigurable robots & systems and applications. San Diego, 2007. 3–6

  21. Rus D, Vona M. Physical implementation of the self-reconfiguring crystalline robot. In: The Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, 2000. 1726–1733

  22. Kotay K, Rus D, Vona M, et al. The self-reconfiguring robotic molecule. In: The Proceedings of IEEE International Conference on Robotics and Automation. Belgium, 1998. 424–431

  23. Suh J W, Homans S B, Yim M. Telecubes: Mechanical design of a module for self-reconfigurable robotics. In: The Proceedings of IEEE International Conference on Robotics and Automation. Washington, 2002. 4095–4101

  24. Kurokawa H, Kamimura A, Yoshida E, et al. M-TRAN II: Metamorphosis from a four-legged walker to a caterpillar. In: The Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, 2003. 2454–2459

  25. Shen W M, Krivokon M, Chiu H, et al. Multimode locomotion via SuperBot reconfigurable robots. Auton Robot, 2006, 20: 165–177

    Article  Google Scholar 

  26. Shen W M, Chiu H, Harris C H, et al. Rolling and climbing by the multifunctional superbot reconfigurable robotic system. In: AIP Conference Proceedings. Brazil, 2008. 839–848

  27. Davey J, Kwok N, Yim M. Emulating self-reconfigurable robots — Design of the SMORES system. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, 2012. 4464–4469

  28. Wei H, Chen Y, Tan J, et al. Sambot: A self-assembly modular robot system. IEEE/ASME Trans Mechatron, 2011, 16: 745–757

    Article  Google Scholar 

  29. Reddy C, Patlolla C, Agrawal A, et al. HexaMob—A hybrid modular robotic design for implementing biomimetic structures. Robotics, 2017, 6: 27

    Article  Google Scholar 

  30. Zhao J, Cui X, Zhu Y, et al. UBot: A new reconfigurable modular robotic system with multimode locomotion ability. Industrial Robot, 2012, 39: 178–190

    Article  Google Scholar 

  31. Zhu Y H, Zhao J, Cui X D, et al. Design and implementation of UBot: A modular Self-Reconfigurable Robot. In: The IEEE International Conference on Mechatronics and Automation. Takamatsu, 2013. 1217–1222

  32. Liu J G, Wang Y C, Ma S G, et al. Enumeration of the non-isomorphic configurations for a reconfigurable modular robot with square-cubic-cell modules. Int J Adv Robot Syst, 2010, 7: 58–68

    Article  Google Scholar 

  33. Liu J G, Wang Y C, Li B, et al. Center-configuration selection technique for the reconfigurable modular robot. Sci China Ser F-Inf Sci, 2007, 50: 697–710

    Article  Google Scholar 

  34. Ding X, Lu S N. Reconfiguration theory of modular reconfigurable mechanism based on analysis of snake cube. J Mech Eng, 2012, 48: 126–135

    Article  Google Scholar 

  35. Ding X, Lu S. Fundamental reconfiguration theory of chain-type modular reconfigurable mechanisms. Mech Mach Theory, 2013, 70: 487–507

    Article  Google Scholar 

  36. Gao Y, Liu J. China’s robotics successes abound. Science, 2014, 345: 523

    Article  Google Scholar 

  37. Liu J G, Zhang X, Hao G B. Survey on research and development of reconfigurable modular robots. J Adv Mech Eng, 2016, 8: 1–21

    Google Scholar 

  38. Yim M, Duff D G, Roufas K. Modular reconfigurable robots, an approach to urban search and rescue. In: The 1st International Workshop on Human-friendly Welfare Robotics Systems. Taejon, 2000. 69–76

  39. Zhong D, Franke J H, Podiyanachari S K, et al. Linear alkane polymerization on a gold surface. Science, 2011, 334: 213–216

    Article  Google Scholar 

  40. Turner W R. Normal alkanes. Ind Eng Chem Prod Res Dev, 1971, 10: 238–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinGuo Liu.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2018YFB1304600), the National Natural Science Foundation of China (Grant No. 51775541), CAS Interdisciplinary Innovation Team (Grant No. JCTD-2018-11), the State Key Laboratory of Robotics Foundation (Grant No. Y91Z0303), and the Liaoning Provincial Natural Science Foundation (Grant No. 2020-MS-033).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Liu, J. Configuration analysis of a chain-type reconfigurable modular robot inspired by normal alkane. Sci. China Technol. Sci. 64, 1167–1176 (2021). https://doi.org/10.1007/s11431-020-1816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1816-0

Keywords

Navigation