Skip to main content
Log in

Fabrication of high strength carbon nanotube/7055Al composite by powder metallurgy combined with subsequent hot extrusion

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Bimodal carbon nanotube reinforced 7055Al (CNT/7055Al) composites containing coarse grain bands and ultra-fine grain zones were fabricated by high energy ball milling, vacuum hot pressing followed by hot extrusion. The effect of extrusion temperature varied from 320°C to 420°C on the microstructure evolution and tensile properties were investigated. Microstructure observation indicates that the elongated coarse grain bands aligned along the extrusion direction after extrusion. The width of the coarse grain bands increased, and the length of the coarse grain bands increased firstly and then decreased with the increase of extrusion temperature. The grain size of the ultra-fine grain zones changed little after hot extrusion, but the ultra-fine grains coarsened after subsequent heat treatment, especially for the composite extruded at low temperature of 320°C. By observing the CNT distribution, it was found that the higher temperature extrusion was beneficial to the CNT orientation along the extrusion direction. Furthermore, a precipitated free zone formed at the boundary between the coarse grain band and the ultra-fine grain zone as the composite extruded at high temperature of 420°C. As the result of the comprehensive influence of the above microstructure, the tensile strength of the composite extruded at moderate temperature of 370°C reached the highest of 826 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams J C, Starke Jr. E A. Progress in structural materials for aerospace systems. Acta Mater, 2003, 51: 5775–5799

    Article  Google Scholar 

  2. Mondal C, Mukhopadhyay A K, Raghu T, et al. Extrusion processing of high-strength al alloy 7055. Mater Manufact Proces, 2007, 22: 424–428

    Article  Google Scholar 

  3. Banerjee S, Chakravartty J K, Singh J B, et al. Super-Strong, Super-Modulus Materials. Elsevier, 2012. 467–505

  4. Al-Aqeeli N, Abdullahi K, Suryanarayana C, et al. Structure of mechanically milled CNT-reinforced Al-alloy nanocomposites. Mater Manuf Processes, 2013, 28: 984–990

    Google Scholar 

  5. Trojanowicz M. Analytical applications of carbon nanotubes: A review. TrAC Trends Anal Chem, 2006, 25: 480–489

    Article  Google Scholar 

  6. Singh L K, Maiti A, Maurya R S, et al. Al alloy nanocomposite reinforced with physically functionalized carbon nanotubes synthesized via spark plasma sintering. Mater Manufact Proces, 2016, 31: 733–738

    Article  Google Scholar 

  7. Wei H, Li Z, Xiong D B, et al. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scripta Mater, 2014, 75: 30–33

    Article  Google Scholar 

  8. Rudianto H, Edtmaier C, Dlouhy I, et al. Effect of ultrasonication dispersion technique on sintering properties of cnt reinforced al-zn-mg-cu powder. Archives Metallurgy Mater, 2017, 62: 1131–1135

    Article  Google Scholar 

  9. Xu R, Tan Z, Fan G, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Compos Part A-Appl Sci Manufact, 2018, 111: 1–11

    Article  Google Scholar 

  10. Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng-R-Rep, 2013, 74: 281–350

    Article  Google Scholar 

  11. Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites. Acta Metall Sin, 2019, 55: 59–72

    Google Scholar 

  12. Kwon H, Estili M, Takagi K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 2009, 47: 570–577

    Article  Google Scholar 

  13. Chen M, Fan G, Tan Z, et al. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites. Mater Des, 2018, 142: 288–296

    Article  Google Scholar 

  14. Liu Z Y, Xiao B L, Wang W G, et al. Modelling of carbon nanotube dispersion and strengthening mechanisms in al matrix composites prepared by high energy ball milling-powder metallurgy method. Compos Part A-Appl Sci Manufact, 2017, 94: 189–198

    Article  Google Scholar 

  15. Ghobadi H, Nemati A, Ebadzadeh T, et al. Improving cnt distribution and mechanical properties of mwcnt reinforced alumina matrix. Mater Sci Eng-A, 2014, 617: 110–114

    Article  Google Scholar 

  16. Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon, 2012, 50: 1843–1852

    Article  Google Scholar 

  17. Jiang L, Li Z, Fan G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon, 2012, 50: 1993–1998

    Article  Google Scholar 

  18. Zhou H W, Mishnaevsky Jr. L, Yi H Y, et al. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of cnt distribution on shearing strength. Compos Part B-Eng, 2016, 88: 201–211

    Article  Google Scholar 

  19. Yu Z, Tan Z, Fan G, et al. Effect of interfacial reaction on Young’s modulus in CNT/Al nanocomposite: A quantitative analysis. Mater Charact, 2018, 137: 84–90

    Article  Google Scholar 

  20. Van Trinh P, Van Luan N, Minh P N, et al. Effect of sintering temperature on properties of CNT/Al composite prepared by capsule-free hot isostatic pressing technique. Trans Ind Inst Met, 2017, 70: 947–955

    Article  Google Scholar 

  21. Li C, Qiu R, Luan B, et al. Effect of carbon nanotubes and high temperature extrusion on the microstructure evolution of Al-Cu alloy. Mater Sci Eng-A, 2017, 704: 38–44

    Article  Google Scholar 

  22. Ma K, Hu T, Yang H, et al. Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys. Acta Mater, 2016, 103: 153–164

    Article  Google Scholar 

  23. Tavighi K, Emamy M, Emami A R. Effects of extrusion temperature on the microstructure and tensile properties of Al-16wt% Al4Sr metal matrix composite. Mater Des, 2013, 46: 598–604

    Article  Google Scholar 

  24. Zhao P T, Wang L D, Du Z M, et al. Low temperature extrusion of 6061 aluminum matrix composite reinforced with SnO2-coated Al18B4O33 whisker. Compos Part A-Appl Sci Manufacturing, 2012, 43: 183–188

    Article  Google Scholar 

  25. Sun Z C, Wu H L, Cao J, et al. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (isv) method. Int J Plast, 2018, 106: 73–87

    Article  Google Scholar 

  26. Sitdikov O, Sakai T, Goloborodko A, et al. Grain refinement in coarse-grained 7475 Al alloy during severe hot forging. Philos Mag, 2005, 85: 1159–1175

    Article  Google Scholar 

  27. Xue J, Wang Y, Zhang Z, et al. Effects of extrusion temperature on dynamic recrystallization, aging microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. Chin J Nonferrous Metals, 2017, 27: 2204–2211

    Google Scholar 

  28. Wilcox B A, Clauer A H. The role of grain size and shape in strengthening of dispersion hardened nickel alloys. Acta Metall, 1972, 20: 743–757

    Article  Google Scholar 

  29. Ogura T, Hirosawa S, Cerezo A, et al. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al-Zn-Mg (-Ag) alloys. Acta Mater, 2010, 58: 5714–5723

    Article  Google Scholar 

  30. Zindal A, Jain J, Prasad R, et al. Effect of pre-strain and grain size on the evolution of precipitate free zones (pfzs) in a Mg-8Al-0.5Zn alloy. Mater Lett, 2017, 201: 207–210

    Article  Google Scholar 

  31. Agnoli A, Bernacki M, Logé R, et al. Selective growth of low stored energy grains during δ sub-solvus annealing in the inconel 718 nickel-based superalloy. Metall Mat Trans A, 2015, 46: 4405–4421

    Article  Google Scholar 

  32. Humphreys F J, Hatherly M. Grain Growth Following Recrystallization. In: Recrystallization and Related Annealing Phenomena. Pergamon, 2004. 333–378

  33. Pabst W, Gregorova E. Characterization of particles and particle systems. ICT Prague, 2007, 122: 122

    Google Scholar 

  34. Abrivard G, Busso E P, Forest S, et al. Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part i: Theory and numerical implementation. Philos Mag, 2012, 92: 3618–3642

    Article  Google Scholar 

  35. Mokdad F, Chen D L, Liu Z Y, et al. Three-dimensional processing maps and microstructural evolution of a CNT-reinforced Al-Cu-Mg nanocomposite. Mater Sci Eng-A, 2017, 702: 425–437

    Article  Google Scholar 

  36. Rane G K, Welzel U, Mittemeijer E J. Grain growth studies on nanocrystalline ni powder. Acta Mater, 2012, 60: 7011–7023

    Article  Google Scholar 

  37. Rofman O V, Bate P S. Dynamic grain growth and particle coarsening in Al-3.5Cu. Acta Mater, 2010, 58: 2527–2534

    Article  Google Scholar 

  38. Borrego A, Fernández R, del Carmen Cristina M ı, et al. Influence of extrusion temperature on the microstructure and the texture of 6061Al-15 vol.% SiCw PM composites. Compos Sci Tech, 2002, 62: 731–742

    Article  Google Scholar 

  39. Dong S, Zhou J, Hui D, et al. Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites. Compos Part A-Appl Sci Manufact, 2015, 68: 356–364

    Article  Google Scholar 

  40. Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater, 2014, 62: 141–155

    Article  Google Scholar 

  41. Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites. Carbon, 2012, 50: 2417–2423

    Article  Google Scholar 

  42. Liu Z Y, Xiao B L, Wang W G, et al. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon, 2013, 62: 35–42

    Article  Google Scholar 

  43. Ovid’ko I A, Sheinerman A G. Ductile vs. Brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater, 2010, 58: 5286–5294

    Article  Google Scholar 

  44. Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation. Carbon, 2020, 157: 602–613

    Article  Google Scholar 

  45. Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA, 2015, 112: 14501–14505

    Article  Google Scholar 

  46. Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature, 2002, 419: 912–915

    Article  Google Scholar 

  47. Proville L, Bakó B. Dislocation depinning from ordered nanophases in a model fcc crystal: From cutting mechanism to orowan looping. Acta Mater, 2010, 58: 5565–5571

    Article  Google Scholar 

  48. Pardoen T, Dumont D, Deschamps A, et al. Grain boundary versus transgranular ductile failure. J Mech Phys Solids, 2003, 51: 637–665

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenYu Liu.

Additional information

This work was supported by the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-JSC015), the Project of Manned Spaceflight (Grant No. 040103), the National Natural Science Foundation of China (Grant Nos. 51931009, 51871214 and 51871215), and the Youth Innovation Promotion Association CAS (Grant No. 2020197).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, K., Liu, Z., Zhang, X. et al. Fabrication of high strength carbon nanotube/7055Al composite by powder metallurgy combined with subsequent hot extrusion. Sci. China Technol. Sci. 64, 1081–1091 (2021). https://doi.org/10.1007/s11431-020-1715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1715-8

Navigation