Skip to main content
Log in

How to apply polar codes in high throughput space communications

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper describes how to apply polar codes in high-throughput space communications. The high throughput space communications can enable terabit data rate capacity wideband wireless transmissions, and offer service availability of anywhere and anytime. The paper investigates the channel characteristics in space communications. The channels are lossy, time-varying, intermittent, long-latency, and with imperfect channel state information (CSI). In order to make the polar codes suitable for the space channel, some improvements and designs on the polar codes are provided in this paper. The encoding and decoding methods of polar codes are discussed, which are the key to determine the performance. We describe some rateless polar coding schemes that can guide the construction of suitable codes for time-varying channels with no-CSI in long-haul transmissions. Then, a high-rate parallel concatenation scheme of polar codes is introduced, which can improve the anti-interrupt ability of polar codes. Moreover, in order to support the massive connectivity requirements of future space communication networks, polar-coded sparse-code-multiple-access (SCMA) schemes are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inigo P, Vidal O, Roy B, et al. Review of terabit/s satellite, the next generation of HTS systems. In: Proceedings of the 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC). 2014. 318–322

  2. Fenech H, Amos S, Tomatis A, et al. High throughput satellite systems: An analytical approach. IEEE Trans Aerosp Electron Syst, 2015, 51: 192–202

    Article  Google Scholar 

  3. Choi J P, Joo C. Challenges for efficient and seamless space-terrestrial heterogeneous networks. IEEE Commun Mag, 2015, 53: 156–162

    Article  Google Scholar 

  4. Wu W R, Liu W W, Qiao D, et al. Investigation on the development of deep space exploration. Sci China Tech Sci, 2012, 55: 1086–1091

    Article  Google Scholar 

  5. Liu K, Lee J J. Recent results on the use of concatenated reed-solomon/viterbi channel coding and data compression for space communications. IEEE Trans Commun, 1984, 32: 518–523

    Article  Google Scholar 

  6. Andrews K S, Divsalar D, Dolinar S, et al. The development of turbo and LDPC codes for deep-space applications. Proc IEEE, 2007, 95: 2142–2156

    Article  Google Scholar 

  7. MacKay D J C. Fountain codes. IEE Proc-Commun, 2005, 152: 1062–1068

    Article  Google Scholar 

  8. Arikan E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inform Theor, 2009, 55: 3051–3073

    Article  MathSciNet  Google Scholar 

  9. Tal I, Vardy A. List decoding of polar codes. IEEE Trans Inform Theor, 2015, 61: 2213–2226

    Article  MathSciNet  Google Scholar 

  10. Giambene G, Kota S, Pillai P. Satellite-5G integration: A network perspective. IEEE Network, 2018, 32: 25–31

    Article  Google Scholar 

  11. Hadinger P. Inmarsat Global Xpress the design, implementation, and activation of a global Ka-band network. In: Proceedings of the 33rd AIAA International Communications Satellite Systems Conference and Exhibition. Queensland, 2015. 4303

  12. Dankberg M, Hudson E. VIASAT: On a mission to deliver the worlds lowest-cost satellite bandwidth. Recent Success Satellite Systems: Visions of the Future. Reston: American Institute of Aeronautics and Astronautics, Inc., 2016. 105–134

    Google Scholar 

  13. Wood L, Lou Y, Olusola O. Revisiting elliptical satellite orbits to enhance the O3b constellation. ArXiv: 1407.2521

  14. Chien K R, Tighe W, Bond T, et al. An overview of electric propulsion at L-3 communications, electron technologies inc. In: Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, 2006

  15. Bauer R. Ka-band propagation measurements: An opportunity with the advanced communications technology satellite (ACTS). Proc IEEE, 1997, 85: 853–862

    Article  Google Scholar 

  16. Takayama S, Horiuchi T, Sato T, et al. Rain attenuation compensation function of WINDS communication systems. In: Proceedings of the 7th International Conference on Information, Communications and Signal Processing (ICICS). Macau, 2009. 1–5

  17. Kubista E, Fontan F P, Castro M A V, et al. Ka-band propagation measurements and statistics for land mobile satellite applications. IEEE Trans Veh Technol, 2000, 49: 973–983

    Article  Google Scholar 

  18. Li W, Law C L, Dubey V K, et al. Ka-band land mobile satellite channel model incorporating weather effects. IEEE Commun Lett, 2001, 5: 194–196

    Article  Google Scholar 

  19. Mori R, Tanaka T. Performance of polar codes with the construction using density evolution. IEEE Commun Lett, 2009, 13: 519–521

    Article  Google Scholar 

  20. Wu D, Li Y, Sun Y. Construction and block error rate analysis of polar codes over AWGN channel based on gaussian approximation. IEEE Commun Lett, 2014, 18: 1099–1102

    Article  Google Scholar 

  21. Tal I, Vardy A. How to construct polar codes. IEEE Trans Inform Theor, 2013, 59: 6562–6582

    Article  MathSciNet  Google Scholar 

  22. Arikan E. Systematic polar coding. IEEE Commun Lett, 2011, 15: 860–862

    Article  Google Scholar 

  23. Chen G T, Zhang Z, Zhong C, et al. A low complexity encoding algorithm for systematic polar codes. IEEE Commun Lett, 2016: 1–1

  24. Arkan E. A performance comparison of polar codes and Reed-Muller codes. IEEE Commun Lett, 2008, 12: 447–449

    Article  Google Scholar 

  25. Fayyaz U U, Barry J R. Low-complexity soft-output decoding of polar codes. IEEE J Sel Areas Commun, 2014, 32: 958–966

    Article  Google Scholar 

  26. Li B, Shen H, Tse D. An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Commun Lett, 2012, 16: 2044–2047

    Article  Google Scholar 

  27. Zhang C, Wang Z, You X, et al. Efficient adaptive list successive cancellation decoder for polar codes. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 2014. 126–130

  28. Chen K, Li B, Shen H, et al. Reduce the complexity of list decoding of polar codes by tree-pruning. IEEE Commun Lett, 2016, 20: 204–207

    Article  Google Scholar 

  29. Zhang Z, Zhang L, Wang X, et al. A split-reduced successive cancellation list decoder for polar codes. IEEE J Sel Areas Commun, 2016, 34: 292–302

    Article  Google Scholar 

  30. Afisiadis O, Balatsoukas-Stimming A, Burg A. A low-complexity improved successive cancellation decoder for polar codes. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 2014. 2116–2120

  31. Zhang Z, Qin K, Zhang L, et al. Progressive bit-flipping decoding of polar codes: A critical-set based tree search approach. IEEE Access, 2018, 6: 57738–57750

    Article  Google Scholar 

  32. Chandesris L, Savin V, Declercq D. Dynamic-SCFlip decoding of polar codes. IEEE Trans Commun, 2018, 66: 2333–2345

    Article  Google Scholar 

  33. Wu D, Li Y, Guo X, et al. Ordered statistic decoding for short polar codes. IEEE Commun Lett, 2016, 20: 1064–1067

    Article  Google Scholar 

  34. Qin K, Zhang Z. Low-latency adaptive ordered statistic decoding of polar codes. IEEE Access, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2940525

  35. Feng B, Jiao J, Liang K, et al. Adjustable soft list decoding for polar codes. In: Proceedings of the IEEE 90th Vehicular Technology Conference (VTC2019-Fall). Honolulu, 2019. 1–5

  36. Li B, Tse D, Chen K, et al. Capacity-achieving rateless polar codes. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT). 2016. 46–50

  37. Hong S N, Hui D, Maric I. Capacity-achieving rate-compatible polar codes. IEEE Trans Inform Theor, 2017, 63: 7620–7632

    Article  MathSciNet  Google Scholar 

  38. Feng B, Zhang Q, Jiao J. An Efficient Rateless Scheme Based on the Extendibility of Systematic Polar Codes. IEEE Access, 2017, 5: 23223–23232

    Article  Google Scholar 

  39. Mahdavifar H, El-Khamy M, Lee J, et al. Performance limits and practical decoding of interleaved reed-solomon polar concatenated codes. IEEE Trans Commun, 2014, 62: 1406–1417

    Article  Google Scholar 

  40. Abbas S M, Fan Y Z, Chen J, et al. Concatenated LDPC-polar codes decoding through belief propagation. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Baltimore, 2017. 1–4

  41. Feng B, Jiao J, Zhou L, et al. A novel high-rate polar-staircase coding scheme. In: Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). Chicago, 2018

  42. Smith B P, Farhood A, Hunt A, et al. Staircase codes: FEC for 100 Gb/s OTN. J Lightwave Technol, 2012, 30: 110–117

    Article  Google Scholar 

  43. Kukieattikool P, Goertz N. Staircase codes for high-rate wireless transmission on burst-error channels. IEEE Wireless Commun Lett, 2016, 5: 128–131

    Article  Google Scholar 

  44. Barakatain M, Kschischang F R. Low-Complexity Concatenated LDPC-Staircase Codes. J Lightwave Technol, 2018, 36: 2443–2449

    Article  Google Scholar 

  45. Vaezi M, Aruma Baduge G A, Liu Y, et al. Interplay between NOMA and other emerging technologies: A survey. IEEE Trans Cogn Commun Netw, 2019, 5: 900–919

    Article  Google Scholar 

  46. Nikopour H, Baligh H. Sparse code multiple access. In: Proceedings of the IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). 2013. 332–336

  47. Dai J, Niu K, Si Z, et al. Polar-coded non-orthogonal multiple access. IEEE Trans Signal Process, 2018, 66: 1374–1389

    Article  MathSciNet  Google Scholar 

  48. Jing S, Yang C, Yang J, et al. Joint detection and decoding of polar-coded scma systems. In: Proceedings of the 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017. 1–6

  49. Zhang Z, Wang X, Zhang Y, et al. Rateless multiple access: Asymptotic throughput analysis and improvement with spatial coupling. IEEE Access, 2018, 6: 63200–63213

    Article  Google Scholar 

  50. Li Y, Liu R, Wang R. A low-complexity snr estimation algorithm based on frozen bits of polar codes. IEEE Commun Lett, 2016, 20: 2354–2357

    Article  Google Scholar 

  51. Li L, Xu Z, Hu Y. Channel Estimation with systematic polar codes. IEEE Trans Veh Technol, 2018, 67: 4880–4889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QinYu Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61831008 and 61525103), the Shenzhen Basic Research Program (Grant No. ZDSYS201707280903305), and the Guangdong Science and Technology Planning Project (Grant No. 2018B030322004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Jiao, J., Wu, S. et al. How to apply polar codes in high throughput space communications. Sci. China Technol. Sci. 63, 1371–1382 (2020). https://doi.org/10.1007/s11431-020-1630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1630-2

Keywords

Navigation