Skip to main content
Log in

Microwave diagnostics of magnetic field strengths in solar flaring loops

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

We have performed microwave diagnostics of the magnetic field strengths in solar flaring loops based on the theory of gyrosynchrotron emission. From Nobeyama Radioheliograph observations of three flare events at 17 and 34 GHz, we obtained the degree of circular polarization and the spectral index of microwave flux density, which were then used to map the magnetic field strengths in post-flare loops. Our results show that the magnetic field strength typically decreases from ∼800 G near the loop footpoints to ∼100 G at a height of 10–25 Mm. Comparison of our results with magnetic field modeling using a flux rope insertion method is also discussed. Our study demonstrates the potential of microwave imaging observations, even at only two frequencies, in diagnosing the coronal magnetic field of flaring regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin H, Kuhn J R, Coulter R. Coronal magnetic field measurements. Astrophys J, 2004, 613: L177–L180

    Google Scholar 

  2. Lin H, Penn M J, Tomczyk S. A new precise measurement of the coronal magnetic field strength. Astrophys J, 2000, 541: L83–L86

    Google Scholar 

  3. Nakariakov V M, Ofman L. Determination of the coronal magnetic field by coronal loop oscillations. Astron Astrophys, 2001, 372: L53–L56

    Google Scholar 

  4. Chen Y, Feng S W, Li B, et al. A coronal seismological study with streamer waves. Astrophys J, 2011, 728: 147

    Google Scholar 

  5. Tian H, McIntosh S W, Wang T, et al. Persistent Doppler shift oscillations observed with HINODE/EIS in the solar corona: Spectroscopic signatures of Alfvenic waves and recurring upflows. Astrophys J, 2012, 759: 144

    Google Scholar 

  6. Schatten K H, Wilcox J M, Ness N F. A model of interplanetary and coronal magnetic fields. Sol Phys, 1969, 6: 442–455

    Google Scholar 

  7. Wiegelmann T, Sakurai T. Solar force-free magnetic fields. Living Rev Sol Phys, 2012, 9: 5

    Google Scholar 

  8. Wiegelmann T, Thalmann J K, Solanki S K. The magnetic field in the solar atmosphere. Astron Astrophys Rev, 2014, 22: 78

    Google Scholar 

  9. Gopalswamy N, Nitta N, Akiyama S, et al. Coronal magnetic field measurement from EUV images made by the Solar Dynamics Observatory. Astrophys J, 2012, 744: 72

    Google Scholar 

  10. Kishore P, Ramesh R, Hariharan K, et al. Constraining the solar coronal magnetic field strength using split-band type II radio burst observations. Astrophys J, 2016, 832: 59

    Google Scholar 

  11. Kumari A, Ramesh R, Kathiravan C, et al. Strength of the solar coronal magnetic field—A comparison of independent estimates using contemporaneous radio and white-light observations. Sol Phys, 2017, 292: 161

    Google Scholar 

  12. Kumari A, Ramesh R, Kathiravan C, et al. Direct estimates of the solar coronal magnetic field using contemporaneous extreme-ultraviolet, radio, and white-light observations. Astrophys J, 2019, 881: 24

    Google Scholar 

  13. Du G, Kong X, Chen Y, et al. An observational revisit of band-split solar type-II radio bursts. Astrophys J, 2015, 812: 52

    Google Scholar 

  14. Du G, Chen Y, Lv M, et al. Temporal spectral shift and polarization of a band-splitting solar type II radio burst. Astrophys J, 2014, 793: L39

    Google Scholar 

  15. Tan B L, Karlicky M, Meszarosova H, et al. Diagnosing physical conditions near the flare energy-release sites from observations of solar microwave type III bursts. Res Astron Astrophys, 2016, 16: 013

    Google Scholar 

  16. Feng S W, Chen Y, Li C Y, et al. Harmonics of solar radio spikes at metric wavelengths. Sol Phys, 2018, 293: 39

    Google Scholar 

  17. Tan B L, Yan Y H, Tan C M, et al. Microwave zebra pattern structures in the X2.2 solar flare on 2011 February 15. Astrophys J, 2012, 744: 166

    Google Scholar 

  18. Akhmedov S H B, Gelfreikh G B, Bogod V M, et al. The measurement of magnetic fields in the solar atmosphere above sunspots using gyro-resonance emission. Sol Phys, 1982, 79: 41–58

    Google Scholar 

  19. Akhmedow S B, Borovik V N, Gelfreikh G B, et al. Structure of a solar active region from RATAN 600 and very large array observations. Astrophys J, 1986, 301: 460–464

    Google Scholar 

  20. Bogod V M, Yasnov L V. On the comparison of radio-astronomical measurements of the height structure of magnetic field with results of model approximations. Astrophys Bull, 2009, 64: 372–385

    Google Scholar 

  21. Kaltman T I, Bogod V M, Stupishin A G, et al. The altitude structure of the coronal magnetic field of AR 10933. Astron Rep, 2012, 56: 790–799

    Google Scholar 

  22. Wang Z, Gary D E, Fleishman G D, et al. Coronal magnetography of a simulated solar active region from microwave imaging spectropolarimetry. Astrophys J, 2015, 805: 93

    Google Scholar 

  23. Anfinogentov S A, Stupishin A G, Myshyakov I I, et al. Record-breaking coronal magnetic field in solar active region 12673. Astrophys J, 2019, 880: L29

    Google Scholar 

  24. Miyawaki S, iwai K, Shibasaki K, et al. Coronal magnetic fields derived from simultaneous microwave and euv observations and comparison with the potential field model. Astrophys J, 2016, 818: 8

    Google Scholar 

  25. Iwai K, Shibasaki K. Measurements of coronal and chromospheric magnetic fields using polarization observations by the Nobeyama Radioheliograph. Publ Astron Soc Jpn, 2013, 65: S14

    Google Scholar 

  26. Iwai K, Shibasaki K, Nozawa S, et al. Coronal magnetic field and the plasma beta determined from radio and multiple satellite observations. Earth Planet Sp, 2014, 66: 149

    Google Scholar 

  27. Ryabov B I, Pilyeva N A, Alissandrakis C E, et al. Coronal magnetography of an active region from microwave polarization inversion. Sol Phys, 1999, 185: 157–175

    Google Scholar 

  28. Ryabov B I, Maksimov V P, Lesovoi S V, et al. Coronal magnetography of solar active region 8365 with the SSRT and NoRH radio heliographs. Sol Phys, 2005, 226: 223–237

    Google Scholar 

  29. Huang G L. Diagnosis of coronal magnetic field and nonthermal electrons from Nobeyama observations of a simple flare. Adv Space Res, 2008, 41: 1191–1194

    Google Scholar 

  30. Huang G L, Li J P, Song Q W. The calculation of coronal magnetic field and density of nonthermal electrons in the 2003 October 27 microwave burst. Res Astron Astrophys, 2013, 13: 215–225

    Google Scholar 

  31. Huang G, Li J, Song Q, et al. Attenuation of coronal magnetic fields in solar microwave bursts. Astrophys J, 2015, 806: 12

    Google Scholar 

  32. Sharykin I N, Kuznetsov A A, Myshyakov I I. Probing twisted magnetic field using microwave observations in an M class solar flare on 11 February, 2014. Sol Phys, 2018, 293: 34

    Google Scholar 

  33. Gary D E, Chen B, Dennis B R, et al. Microwave and hard X-Ray observations of the 2017 September 10 solar limb flare. Astrophys J, 2018, 863: 83

    Google Scholar 

  34. Kuridze D, Mathioudakis M, Morgan H, et al. Mapping the magnetic field of flare coronal loops. Astrophys J, 2019, 874: 126

    Google Scholar 

  35. Li D, Yuan D, Su Y N, et al. Non-damping oscillations at flaring loops. Astron Astrophys, 2018, 617: A86

    Google Scholar 

  36. Dulk G A. Radio emission from the sun and stars. Annu Rev Astron Astrophys, 1985, 23: 169–224

    Google Scholar 

  37. Nakajima H, Nishio M, Enome S, et al. The Nobeyama Radioheliograph. Proc IEEE, 1994, 82: 705–713

    Google Scholar 

  38. Lemen J R, Title A M, Akin D J, et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys, 2012, 275: 17–40

    Google Scholar 

  39. Scherrer P H, Schou J, Bush R I, et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Sol Phys, 2012, 275: 207–227

    Google Scholar 

  40. Pesnell W D, Thompson B J, Chamberlin P C. The Solar Dynamics Observatory (SDO). Sol Phys, 2012, 275: 3–15

    Google Scholar 

  41. Handy B N, Acton L W, Kankelborg C C, et al. The Transition Region and Coronal Explorer. Sol Phys, 1999, 187: 229–260

    Google Scholar 

  42. Scherrer P H, Bogart R S, Bush R I, et al. The solar oscillations investigation—Michelson Doppler Imager. Sol Phys, 1995, 162: 129–188

    Google Scholar 

  43. Domingo V, Fleck B, Poland A I. The SOHO mission: An overview. Sol Phys, 1995, 162: 1–37

    Google Scholar 

  44. Wu Z, Chen Y, Huang G, et al. Microwave imaging of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare. Astrophys J, 2016, 820: L29

    Google Scholar 

  45. Huang J, Kontar E P, Nakariakov V M, et al. Quasi-periodic acceleration of electrons in the flare on 2012 July 19. Astrophys J, 2016, 831: 119

    Google Scholar 

  46. Carmichael H. A process for flares. NASA Spec Publ, 1964, 50: 451

    Google Scholar 

  47. Sturrock P A. Model of the high-energy phase of solar flares. Nature, 1966, 211: 695–697

    Google Scholar 

  48. Hirayama T. Theoretical model of flares and prominences. I: Evaporating flare model. Sol Phys, 1974, 34: 323–338

    Google Scholar 

  49. Kopp R A, Pneuman G W. Magnetic reconnection in the corona and the loop prominence phenomenon. Sol Phys, 1976, 50: 85–98

    Google Scholar 

  50. Kim S, Shibasaki K, Bain H M, et al. Plasma upflows and microwave emission in hot supra-arcade structure associated with an M1.6 limb flare. Astrophys J, 2014, 785: 106

    Google Scholar 

  51. Ning H, Chen Y, Wu Z, et al. Two-stage energy release process of a confined flare with double HXR peaks. Astrophys J, 2018, 854: 178

    Google Scholar 

  52. van Ballegooijen A A. Observations and modeling of a filament on the sun. Astrophys J, 2004, 612: 519–529

    Google Scholar 

  53. Su Y, Surges V, van Ballegooijen A, et al. Observations and magnetic field modeling of the flare/coronal mass ejection event on 2010 April 8. Astrophys J, 2011, 734: 53

    Google Scholar 

  54. Chen Y, Tian H, Su Y, et al. Diagnosing the magnetic field structure of a coronal cavity observed during the 2017 total solar eclipse. Astrophys J, 2018, 856: 21

    Google Scholar 

  55. Yan Y, Zhang J, Wang W, et al. The Chinese Spectral Radioheliograph—CSRH. Earth Moon Planet, 2009, 104: 97–100

    Google Scholar 

  56. van Haarlem M P, Wise M W, Gunst A W, et al. LOFAR: The LOw-Frequency ARray. Astron Astrophys, 2013, 556: A2

    Google Scholar 

  57. Tingay S J, Goeke R, Bowman J D, et al. The Murchison Widefield Array: The square kilometre array precursor at low radio frequencies. Publ Astron Soc Aust, 2013, 30: E007

    Google Scholar 

  58. Perley R A, Chandler C J, Butler B J, et al. The Expanded Very Large Array: A new telescope for new science. Astrophys J, 2011, 739: L1

    Google Scholar 

  59. Chen X, Yan Y, Tan B, et al. Quasi-periodic pulsations before and during a solar flare in AR 12242. Astrophys J, 2019, 878: 78

    Google Scholar 

  60. Chen B, Yu S, Battaglia M, et al. Magnetic reconnection null points as the origin of semirelativistic electron beams in a solar jet. Astrophys J, 2018, 866: 62

    Google Scholar 

  61. Mohan A, McCauley P I, Oberoi D, et al. A weak coronal heating event associated with periodic particle acceleration episodes. Astrophys J, 2019, 883: 45

    Google Scholar 

  62. Chen Y J, Tian H, Zhu X S, et al. Solar ultraviolet bursts in a coordinated observation of IRIS, Hinode and SDO. Sci China Tech Sci, 2019, 62: 1555–1564

    Google Scholar 

  63. Huang Z, Xia L, Nelson C J, et al. Magnetic braids in eruptions of a spiral structure in the solar atmosphere. Astrophys J, 2018, 854: 80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Tian.

Additional information

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17040507), and the National Natural Science Foundation of China (Grant Nos. 11790300, 11790301, 11790302, 11790304, 11825301, 11973057, 11803002 and 11473071). We thank Dr. Yang Guo for helpful discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Tan, B., Su, Y. et al. Microwave diagnostics of magnetic field strengths in solar flaring loops. Sci. China Technol. Sci. 64, 169–178 (2021). https://doi.org/10.1007/s11431-020-1620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1620-7

Keywords

Navigation