Hudson H S, Bougeret J L, Burkepile J. Coronal mass ejections: Overview of observations. Space Sci Rev, 2006, 123: 13–30
Google Scholar
Yashiro S. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res, 2004, 109: A07105
Google Scholar
Dikpati M, Charbonneau P. A babcock-leighton flux transport dynamo with solar-like differential rotation. Astrophys J, 1999, 518: 508–520
Google Scholar
Reid G C. Solar variability and its implications for the human environment. J Atmos Sol-Terrestrial Phys, 1999, 61: 3–14
Google Scholar
Lean J, Rind D. Evaluating sun-climate relationships since the little ice age. J Atmos Sol-Terrestrial Phys, 1999, 61: 25–36
Google Scholar
Nandy D, Muñoz-Jaramillo A, Martens P C H. The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature, 2011, 471: 80–82
Google Scholar
Schrijver C J, Livingston W C, Woods T N, et al. The minimal solar activity in 2008–2009 and its implications for long-term climate modeling. Geophys Res Lett, 2011, 38: L06701
Google Scholar
McComas D J, Angold N, Elliott H A, et al. Weakest Solar wind of the space age and the current “mini” solar maximum. Astrophys J, 2013, 779: 2
Google Scholar
Feulner G, Rahmstorf S. On the effect of a new grand minimum of solar activity on the future climate on Earth. Geophys Res Lett, 2010, 37: L05707
Google Scholar
Domingo V, Fleck B, Poland A I. SOHO: The solar and heliospheric observatory. Space Sci Rev, 1995, 72: 81–84
Google Scholar
Handy B N, Acton L W, Kankelborg C C, et al. The transition region and coronal explorer. Sol Phys, 1999, 187: 229–260
Google Scholar
Ogawara Y, Takano T, Kato T, et al. The solar-A mission—An overview. Sol Phys, 1991, 136: 1–16
Google Scholar
Pesnell W D, Thompson B J, Chamberlin P C. The solar dynamics observatory (SDO). Sol Phys, 2012, 275: 3–15
Google Scholar
Kosugi T, Matsuzaki K, Sakao T, et al. The hinode (solar-B) mission: An overview. Sol Phys, 2007, 243: 3–17
Google Scholar
Kaiser M L, Kucera T A, Davila J M, et al. The stereo mission: An introduction. Space Sci Rev, 2008, 136: 5–16
Google Scholar
Müller D, Marsden R G, St. Cyr O C, et al. Solar orbiter. Exploring the sun-heliosphere connection. Sol Phys, 2013, 285: 25–70
Google Scholar
Ogilvie K W, Parks G K. First results from WIND spacecraft: An introduction. Geophys Res Lett, 1996, 23: 1179–1181
Google Scholar
Stone R G, Frandsen A M, Mewaldt R A, et al. The advanced composition explorer. Space Sci Rev, 1998, 86: 1–22
Google Scholar
NOAA. Dscovr: Deep space climate observatory. 2015. https://www.nesdis.noaa.gov/content/dscovr-deep-space-climate-observatory
Winkler W. HELIOS assessment and mission results. Acta Astronaut, 1976, 3: 435–447
Google Scholar
Wenzel K P, Marsden R G, Page D E, et al. The Ulysses mission. Astron Astrophys Suppl, 1992, 92: 207
Google Scholar
Fox N J, Velli M C, Bale S D, et al. The solar probe plus mission: Humanity’s first visit to our star. Space Sci Rev, 2016, 204: 7–48
Google Scholar
Solomon S C, McNutt Jr. R L, Gold R E, et al. MESSENGER mission overview. Space Sci Rev, 2007, 131: 3–39
Google Scholar
Svedhem H, Titov D V, McCoy D, et al. Venus expressłthe first european mission to venus. Planet Space Sci, 2007, 55: 1636–1652
Google Scholar
Schmidt R. Mars express-ESA’s first mission to planet Mars. Acta Astronaut, 2003, 52: 197–202
Google Scholar
Jakosky B M, Lin R P, Grebowsky J M, et al. The mars atmosphere and volatile evolution (MAVEN) mission. Space Sci Rev, 2015, 195: 3–48
Google Scholar
Wang Y M, Chen X, Wang P C, et al. Concept of the solar ring mission: Preliminary design and mission profile. Sci China Tech Sci, 2020, doi: https://doi.org/10.1007/s11431-020-1612-y
Allen Gary G, Hagyard M J. Transformation of vector magnetograms and the problems associated with the effects of perspective and the azimuthal ambiguity. Sol Phys, 1990, 126: 21–36
Google Scholar
Schou J, Scherrer P H, Bush R I, et al. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys, 2012, 275: 229–259
Google Scholar
Liu L, Wang Y, Wang J, et al. Why is a flare-rich active region CME-poor? Astrophys J, 2016, 826: 119
Google Scholar
Jin C L, Wang J X, Xie Z X. Solar intranetwork magnetic elements: Intrinsically weak or strong? Sol Phys, 2012, 280: 51–67
Google Scholar
Wiegelmann T, Sakurai T. Solar force-free magnetic fields. Living Rev Sol Phys, 2012, 9: 5
Google Scholar
Wiegelmann T. Nonlinear force-free modeling of the solar coronal magnetic field. J Geophys Res, 2008, 113: A03S02
Google Scholar
Christensen-Dalsgaard J, Dappen W, Ajukov S V, et al. The current state of solar modeling. Science, 1996, 272: 1286–1292
Google Scholar
Scherrer P H, Bogart R S, Bush R I, et al. The solar oscillations investigation-michelson doppler imager. Sol Phys, 1995, 162: 129–188
Google Scholar
Harvey JW, Hill F, Hubbard R P, et al. The global oscillation network group (GONG) project. Science, 1996, 272: 1284–1286
Google Scholar
Thompson M J, Toomre J, Anderson E R, et al. Differential rotation and dynamics of the solar interior. Science, 1996, 272: 1300–1305
Google Scholar
Howe R, Christensen-Dalsgaard J, Hill F, et al. Deeply penetrating banded zonal flows in the solar convection zone. Astrophys J, 2000, 533: L163–L166
Google Scholar
Zhao J, Bogart R S, Kosovichev A G, et al. Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the sun. Astrophys J, 2013, 774: L29
Google Scholar
Miesch M S, Brown B P. Convective babcock-leighton dynamo models. Astrophys J, 2012, 746: L26
Google Scholar
Simnett G M, Hudson H S. The evolution of a rapidly-expanding active region loop into a trans-equatorial coronal mass ejection. In: Prcoceedings of the Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, 31st ESLAB symposium (ESA SP-415). Netherlands, 1997. 437–441
Moon Y J, Choe G S, Wang H, et al. Sympathetic coronal mass ejections. Astrophys J, 2003, 588: 1176–1182
Google Scholar
Zhou G, Wang J, Wang Y, et al. Quasi-simultaneous flux emergence in the events of October–November 2003. Sol Phys, 2007, 244: 13–24
Google Scholar
Schrijver C J, Title A M. Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J Geophys Res, 2011, 116: A04108
Google Scholar
Zhang Y, Wang J, Attrill G D R, et al. Coronal magnetic connectivity and EUV dimmings. Sol Phys, 2007, 241: 329–349
Google Scholar
Pevtsov A A. Transequatorial loops in the solar corona. Astrophys J, 2000, 531: 553–560
Google Scholar
Heinemann S G, Temmer M, Hofmeister S J, et al. Three-phase evolution of a coronal hole. I. 360◦ remote sensing and in situ observations. Astrophys J, 2018, 861: 151
Google Scholar
Liu Y, Hoeksema J T, Scherrer P H, et al. Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/michelson doppler imager. Sol Phys, 2012, 279: 295–316
Google Scholar
Aschwanden MJ, Wülser J P, Nitta N V, et al. First three-dimensional reconstructions of coronal loops with the STEREO A and B spacecraft. I. Geometry. Astrophys J, 2008, 679: 827–842
Google Scholar
Liu J J, Wang Y M, Liu R, et al. When and how does a prominence-like jet gain kinetic energy? Astrophys J, 2014, 782: 94
Google Scholar
Kwon R Y, Chae J, Zhang J. Stereoscopic determination of heights of extreme ultraviolet bright points using data taken by SECCHI/EUVI aboard STEREO. Astrophys J, 2010, 714: 130–137
Google Scholar
Robbrecht E, Patsourakos S, Vourlidas A. No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys J, 2009, 701: 283–291
Google Scholar
Wang Y, Chen C, Gui B, et al. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J Geophys Res, 2011, 116: A04104
Google Scholar
Thernisien A F R, Howard R A, Vourlidas A. Modeling of flux rope coronal mass ejections. Astrophys J, 2006, 652: 763–773
Google Scholar
Sheeley N R, Lee D D H, Casto K P, et al. The structure of streamer blobs. Astrophys J, 2009, 694: 1471–1480
Google Scholar
Lugaz N, Vourlidas A, Roussev I I. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere—application to CME-CME interaction. Ann Geophys, 2009, 27: 3479–3488
Google Scholar
Feng L, Inhester B, Mierla M. Comparisons of CME morphological characteristics derived from five 3D reconstruction methods. Sol Phys, 2013, 282: 221–238
Google Scholar
Li X L, Wang Y M, Liu R, et al. Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white-light: Solar wind transients in 3d. J Geophys Res Space Phys, 2020, doi: https://doi.org/10.1029/2019JA027513
Li X L, Wang Y M, Liu R, et al. Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white-light: Small transients along the Sun-Earth line. J Geophys Res Space Phys, 2018, 123: 7257–7270
Google Scholar
Wang Y, Zhang Q, Liu J, et al. On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015. J Geophys Res Space Phys, 2016, 121: 7423–7434
Google Scholar
Wang Y, Shen C, Wang S, et al. Deflection of coronal mass ejection in the interplanetary medium. Sol Phys, 2004, 222: 329–343
Google Scholar
Riley P, Crooker N U. Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys J, 2004, 600: 1035–1042
Google Scholar
Manchester IVW, Gombosi T, DeZeeuw D, et al. Eruption of a buoyantly emerging magnetic flux rope. Astrophys J, 2004, 610: 588–596
Google Scholar
Wang Y, Wang B, Shen C, et al. Deflected propagation of a coronal mass ejection from the corona to interplanetary space. J Geophys Res Space Phys, 2014, 119: 5117–5132
Google Scholar
Kay C, Opher M. The heliocentric distance where the deflections and rotations of solar coronal mass ejections occur. Astrophys J, 2015, 811: L36
Google Scholar
Gopalswamy N, Lara A, Lepping R P, et al. Interplanetary acceleration of coronal mass ejections. Geophys Res Lett, 2000, 27: 145–148
Google Scholar
Vršnak B, Vrbanec D, Čalogović J. Dynamics of coronal mass ejections. Astron Astrophys, 2008, 490: 811–815
Google Scholar
Vršnak B, Žic T, Vrbanec D, et al. Propagation of interplanetary coronal mass ejections: The drag-based model. Sol Phys, 2013, 285: 295–315
Google Scholar
Shen C L, Wang Y M, Pan Z H, et al. Full-halo coronal mass ejections: Arrival at the Earth. J Geophys Res Space Phys, 2014, 119: 5107–5116
Google Scholar
Dasso S, Mandrini C H, Démoulin P, et al. A new model-independent method to compute magnetic helicity in magnetic clouds. Astron Astrophys, 2006, 455: 349–359
MATH
Google Scholar
Ruffenach A, Lavraud B, Farrugia C J, et al. Statistical study of magnetic cloud erosion by magnetic reconnection. J Geophys Res Space Phys, 2015, 120: 43–60
Google Scholar
Wang Y M, Shen C L, Liu R, et al. Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud. J Geophys Res Space Phys, 2018, 123: 3238–3261
Google Scholar
Shen C, Wang Y, Wang S, et al. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nat Phys, 2012, 8: 923–928
Google Scholar
Lugaz N, Farrugia C J, Davies J A, et al. The deflection of the two interacting coronal mass ejections of 2010 May 23–24 as revealed by combined in site measurements and heliospheric imaging. Astrophys J, 2012, 759: 68
Google Scholar
Temmer M, Veronig A M, Peinhart V, et al. Asymmetry in the CME-CME interaction process for the events from 2011 February 14–15. Astrophys J, 2014, 785: 85
Google Scholar
Mishra W, Wang Y, Srivastava N, et al. Assessing the nature of collisions of coronal mass ejections in the inner heliosphere. Astrophys J Suppl Ser, 2017, 232: 5
Google Scholar
Larson D E, Lin R P, McTiernan J M, et al. Tracing the topology of the October 18–20, 1995, magnetic cloud with ∼ 0:1 − 102 kev electrons. Geophys Res Lett, 1997, 24: 1911–1914
Google Scholar
Wang Y, Zhou Z, Shen C, et al. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J Geophys Res Space Phys, 2015, 120: 1543–1565
Google Scholar
Wang Y, Zhuang B, Hu Q, et al. On the twists of interplanetary magnetic flux ropes observed at 1 AU. J Geophys Res Space Phys, 2016, 121: 9316–9339
Google Scholar
Démoulin P, Janvier M, Dasso S. Magnetic flux and helicity of magnetic clouds. Sol Phys, 2016, 291: 531–557
Google Scholar
Owens M J. Do the legs of magnetic clouds contain twisted flux-rope magnetic fields? Astrophys J, 2016, 818: 197
Google Scholar
Zhao A, Wang Y, Chi Y, et al. Main cause of the poloidal plasma motion inside a magnetic cloud inferred from multiple-spacecraft observations. Sol Phys, 2017, 292: 58
Google Scholar
Owens M J, Lockwood M, Barnard L A. Coronal mass ejections are not coherent magnetohydrodynamic structures. Sci Rep, 2017, 7: 4152
Google Scholar
Desai M, Giacalone J. Large gradual solar energetic particle events. Living Rev Sol Phys, 2016, 13: 3
Google Scholar
Cane H V, Reames D V, von Rosenvinge T T. The role of interplanetary shocks in the longitude distribution of solar energetic particles. J Geophys Res, 1988, 93: 9555–9567
Google Scholar
Guo J N, Dumbović M, Wimmer-Schweingruber R F, et al. Modeling the evolution and propagation of 10 September 2017 CMEs and SEPs arriving at Mars constrained by remote sensing and in situ measurement. Space Weather, 2018, 16: 1156–1169
Google Scholar
Hassler D M, Zeitlin C, Wimmer-Schweingruber R F, et al. The radiation assessment detector (RAD) investigation. Space Sci Rev, 2012, 170: 503–558
Google Scholar
Wang Y, Zhang J, Shen C. An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations. J Geophys Res, 2009, 114: A10104
Google Scholar
Mishra W, Wang Y. Modeling the thermodynamic evolution of coronal mass ejections using their kinematics. Astrophys J, 2018, 865: 50
Google Scholar
Wang Y, Cao H, Chen J, et al. Solar limb prominence catcher and tracker (SLIPCAT): An automated system and its preliminary statistical results. Astrophys J, 2010, 717: 973–986
Google Scholar
Gosling J T. Magnetic reconnection in the solar wind. Space Sci Rev, 2012, 172: 187–200
Google Scholar
Shen F, Shen C, Wang Y, et al. Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations. Geophys Res Lett, 2013, 40: 1457–1461
Google Scholar
Reiner M J, Stone R G. A new method for reconstructing Type-III trajectories. Sol Phys, 1986, 106: 397–401
Google Scholar
Krupar V, Maksimovic M, Santolik O, et al. Statistical survey of type III radio bursts at long wavelengths observed by the solar terrestrial relations observatory (STEREO)/waves instruments: Goniopolarimetric properties and radio source locations. Sol Phys, 2014, 289: 4633–4652
Google Scholar
Magdalenić J, Marqué C, Krupar V, et al. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission. Astrophys J, 2014, 791: 115
Google Scholar
Zhang P, Wang C, Ye L, et al. Forward modeling of the type III radio burst exciter. Sol Phys, 2019, 294: 62
Google Scholar
Cecconi B, Bonnin X, Hoang S, et al. STEREO/waves goniopolarimetry. Space Sci Rev, 2008, 136: 549–563
Google Scholar
Leamon R J, Smith CW, Ness N F, et al. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J Geophys Res, 1998, 103: 4775–4788
Google Scholar
Hu R X, Shan X, Yuan G Y, et al. A low-energy ion spectrometer with half-space entrance for three-axis stabilized spacecraft. Sci China Tech Sci, 2019, 62: 1015–1027
Google Scholar
Malandraki O E, Lario D, Lanzerotti L J, et al. October/November 2003 interplanetary coronal mass ejections: ACE/EPAM solar energetic particle observations. J Geophys Res, 2005, 110: A09S06
Google Scholar
Wu W, Chen M, Zhang Z, et al. Overview of deep space laser communication. Sci China Inf Sci, 2018, 61: 040301
MathSciNet
Google Scholar