Skip to main content
Log in

Distributed accelerated optimization algorithms: Insights from an ODE

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider the distributed optimization problem, where the goal is to minimize the global objective function formed by a sum of agents’ local smooth and strongly convex objective functions, over undirected connected graphs. Several distributed accelerated algorithms have been proposed for solving such a problem in the existing literature. In this paper, we provide insights for understanding these existing distributed algorithms from an ordinary differential equation (ODE) point of view. More specifically, we first derive an equivalent second-order ODE, which is the exact limit of these existing algorithms by taking the small step-size. Moreover, focusing on the quadratic objective functions, we show that the solution of the resulting ODE exponentially converges to the unique global optimal solution. The theoretical results are validated and illustrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsitsiklis J N. Problems in decentralized decision making and computation. Dissertation for Doctoral Degree. Cambridge: Massachusetts Institute of Technology, 1984

    Google Scholar 

  2. Tsitsiklis J, Bertsekas D, Athans M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans Automat Contr, 1986, 31: 803–812

    Article  MathSciNet  Google Scholar 

  3. Xiao L, Boyd S. Optimal scaling of a gradient method for distributed resource allocation. J Optim Theor Appl, 2006, 129: 469–488

    Article  MathSciNet  Google Scholar 

  4. Molzahn D K, Dorfler F, Sandberg H, et al. A Survey of distributed optimization and control algorithms for electric power systems. IEEE Trans Smart Grid, 2017, 8: 2941–2962

    Article  Google Scholar 

  5. Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. FNT Mach Learn, 2010, 3: 1–122

    Article  Google Scholar 

  6. Rabbat M, Nowak R. Distributed optimization in sensor networks. In: Third International Symposium on Information Processing in Sensor Networks. 2004. 20–27

  7. Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control. IEEE Control Syst, 2007, 27: 71–82

    Article  Google Scholar 

  8. Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proc IEEE, 2007, 95: 215–233

    Article  Google Scholar 

  9. Yuan Y, Stan G B, Shi L, et al. Decentralised minimum-time consensus. Automatica, 2013, 49: 1227–1235

    Article  MathSciNet  Google Scholar 

  10. Gao W, Jiang Z P, Lewis F L, et al. Leader-to-formation stability of multiagent systems: An adaptive optimal control approach. IEEE Trans Automat Contr, 2018, 63: 3581–3587

    Article  MathSciNet  Google Scholar 

  11. Nedić A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Trans Automat Contr, 2009, 54: 48–61

    Article  MathSciNet  Google Scholar 

  12. Nedić A, Olshevsky A. Distributed optimization over time-varying directed graphs. IEEE Trans Automat Contr, 2015, 60: 601–615

    Article  MathSciNet  Google Scholar 

  13. Hong Y G, Zhang Y Q. Distributed optimization: Algorithm design and convergence analysis (in Chinese). Contl Theor Appl, 2014, 31: 850–857

    Google Scholar 

  14. Yi P, Hong Y G. Distributed cooperative optimization and its applications (in Chinese). Sci Sin Math, 2016, 46: 1547–1564

    Google Scholar 

  15. Long Y S, Liu S, Xie L H. Distributed constrained stochastic optimal consensus (in Chinese). Sci Sin Math, 2016, 46: 1487–1498

    Google Scholar 

  16. Nedić A, Liu J. Distributed optimization for control. Ann Rev Control Robot Auton Syst, 2018, 1: 77–103

    Article  Google Scholar 

  17. Yang T, Yi X, Wu J, et al. A survey of distributed optimization. Annu Rev Control, 2019, 47: 278–305

    Article  MathSciNet  Google Scholar 

  18. Xie P, You K Y, Hong Y G, et al. A survey of distributed convex optimization algorithms over networks (in Chinese). Contl Theor Appl, 2018, 35: 918–927

    Google Scholar 

  19. Yang T, Chai T Y. Research status and prospects of distributed collaborative optimization (in Chinese). Sci Sin Tech, 2020, doi: https://doi.org/10.1360/SST-2020-0040

  20. Matei I, Baras J S. Performance evaluation of the consensus-based distributed subgradient method under random communication topologies. IEEE J Sel Top Signal Process, 2011, 5: 754–771

    Article  ADS  Google Scholar 

  21. Yuan K, Ling Q, Yin W. On the convergence of decentralized gradient descent. SIAM J Optim, 2016, 26: 1835–1854

    Article  MathSciNet  Google Scholar 

  22. Shi W, Ling Q, Wu G, et al. EXTRA: An exact first-order algorithm for decentralized consensus optimization. SIAM J Optim, 2015, 25: 944–966

    Article  MathSciNet  Google Scholar 

  23. Qu G N, Li N. Harnessing smoothness to accelerate distributed optimization. IEEE Trans Control Netw Syst, 2018, 5: 1245–1260

    Article  MathSciNet  Google Scholar 

  24. Nedić A, Olshevsky A, Shi W. Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J Optim, 2017, 27: 2597–2633

    Article  MathSciNet  Google Scholar 

  25. Xu J M, Zhu S Y, Soh Y C, et al. Convergence of asynchronous distributed gradient methods over stochastic networks. IEEE Trans Automat Contr, 2018, 63: 434–448

    Article  MathSciNet  Google Scholar 

  26. Jakovetić D. A unification and generalization of exact distributed first-order methods. IEEE Trans Signal Inf Process Networks, 2019, 5: 31–46

    Article  MathSciNet  Google Scholar 

  27. Yang T, George J, Qin J, et al. Distributed least squares solver for network linear equations. Automatica, 2020, 113: 108798

    Article  MathSciNet  Google Scholar 

  28. Yuan Y, Tang X, Zhou W, et al. Data driven discovery of cyber physical systems. Nat Commun, 2019, 10: 4894

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Wang J, Elia N. Control approach to distributed optimization. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing. Allerton, 2010. 557–561

  30. Gharesifard B, Cortes J. Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans Automat Contr, 2014, 59: 781–786

    Article  MathSciNet  Google Scholar 

  31. Xie Y J, Lin Z L. Global optimal consensus for multi-agent systems with bounded controls. Syst Control Lett, 2017, 102: 104–111

    Article  MathSciNet  Google Scholar 

  32. Kia S S, Cortés J, Martínez S. Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica, 2015, 55: 254–264

    Article  MathSciNet  Google Scholar 

  33. Lu J, Tang C Y. Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case. IEEE Trans Automat Contr, 2012, 57: 2348–2354

    Article  MathSciNet  Google Scholar 

  34. Chen W, Ren W. Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. Automatica, 2016, 65: 90–97

    Article  MathSciNet  Google Scholar 

  35. Mokhtari A, Ling Q, Ribeiro A. Network newton distributed optimization methods. IEEE Trans Signal Process, 2017, 65: 146–161

    Article  MathSciNet  ADS  Google Scholar 

  36. Varagnolo D, Zanella F, Cenedese A, et al. Newton-Raphson consensus for distributed convex optimization. IEEE Trans Automat Contr, 2016, 61: 994–1009

    Article  MathSciNet  Google Scholar 

  37. Su W J, Boyd S, Candés E J. A differential equation for modeling Nesterov’s accelerated gradient method: Theory and insights. J Mach Learn Res, 2016, 17: 1–43

    MathSciNet  Google Scholar 

  38. Brown A A, Bartholomew-Biggs M C. Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations. J Optim Theor Appl, 1989, 62: 211–224

    Article  MathSciNet  Google Scholar 

  39. Nesterov Y E. Introductory Lectures on Convex Optimization: A Basic Course. New York: Springer, 2004. 87

    Book  Google Scholar 

  40. Wibisono A, Wilson A C, Jordan M I. A variational perspective on accelerated methods in optimization. Proc Natl Acad Sci, 2016, 113: E7351–E7358

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Shi B, Du S, Su W J, et al. Acceleration via symplectic discretization of high-resolution differential equations. In: Proceedings of the 33th International Conference on Neural Information Processing Systems. 2019. 5745–5753

  42. Zhang J Z, Uribe C A, Mokhtari A, et al. Achieving acceleration in distributed optimization via direct discretization of the Heavy-Ball ODE. In: Proceedings of the American Control Conference. IEEE, 2019. 3408–3413

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91748112, 61991403, 61991404, and 61991400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Yang, T. & Chai, T. Distributed accelerated optimization algorithms: Insights from an ODE. Sci. China Technol. Sci. 63, 1647–1655 (2020). https://doi.org/10.1007/s11431-020-1596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1596-8

Navigation