Skip to main content
Log in

Reversible phase-transfer mediated single reverse micelle towards synthesis of silver nanocrystals

  • Letter
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reference

  1. Nowack B. Nanosilver revisited downstream. Science, 2010, 330: 1054–1055

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Oh T, Park S S, Mirkin C A. Stabilization of colloidal crystals engineered with DNA. Adv Mater, 2019, 31: 1805480

    Article  Google Scholar 

  3. Yang P, Zheng J, Xu Y, et al. Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv Mater, 2016, 28: 10508–10517

    Article  CAS  PubMed  Google Scholar 

  4. Chen T, Yang S, Chai J, et al. Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci Adv, 2017, 3: e1700956

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  5. Zhao Z, Chen C, Liu Z, et al. Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv Mater, 2019, 31: 1808115

    Article  Google Scholar 

  6. Tang S, Zheng J. Antibacterial activity of silver nanoparticles: Structural effects. Adv Healthcare Mater, 2018, 7: 1701503

    Article  Google Scholar 

  7. Liu Z, Yang Z, Peng B, et al. Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins. Adv Mater, 2014, 26: 2431–2439

    Article  CAS  PubMed  Google Scholar 

  8. Qin R, Liu Y, Tao F, et al. Protein-bound freestanding 2D metal film for stealth information transmission. Adv Mater, 2018, 1803377

    Google Scholar 

  9. Wang L, Albouy P A, Pileni M P. Synthesis and self-assembly behavior of charged Au nanocrystals in aqueous solution. Chem Mater, 2015, 27: 4431–4440

    Article  CAS  Google Scholar 

  10. Courty A, Richardi J, Albouy P A, et al. How to control the crystalline structure of supracrystals of 5-nm silver nanocrystals. Chem Mater, 2011, 23: 4186–4192

    Article  CAS  Google Scholar 

  11. Ruitenbeek J V. Silver nanoswitch. Nature, 2005, 433: 21–22

    Article  PubMed  ADS  Google Scholar 

  12. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev, 2011, 112: 2373–2433

    Article  PubMed  Google Scholar 

  13. Wei J, Deeb C, Pelouard J L, et al. Influence of cracks on the optical properties of silver nanocrystals supracrystal films. ACS Nano, 2018, 13: 573–581

    Article  PubMed  Google Scholar 

  14. Zhang Q, Li W, Wen L P, et al. Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem Eur J, 2010, 16: 10234–10239

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Du J, Shao Y, et al. One-pot preparation of nanoporous Ag- Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity. Sci Rep, 2017, 7: 10249

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  16. Ruditskiy A, Xia Y. Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: The roles of heterogeneous nucleation and surface capping. J Am Chem Soc, 2016, 138: 3161–3167

    Article  CAS  PubMed  Google Scholar 

  17. Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun, 1994, 0: 801–802

    Article  CAS  Google Scholar 

  18. Yang J, Sargent E H, Kelley S O, et al. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat Mater, 2009, 8: 683–689

    Article  CAS  PubMed  Google Scholar 

  19. Pileni M. Reverse micelles as micro-reactors. J Phys Chem, 1993, 97: 6961–6973

    Article  CAS  Google Scholar 

  20. Zhang W, Qiao X, Chen J. Synthesis of silver nanoparticles—Effects of concerned parameters in water/oil microemulsion. Mater Sci Eng- B, 2007, 142: 1–15

    Article  CAS  Google Scholar 

  21. Wei J, Schaeffer N, Albouy P A, et al. Surface plasmon resonance properties of silver nanocrystals differing in size and coating agent ordered in 3D supracrystals. Chem Mater, 2015, 27: 5614–5621

    Article  CAS  Google Scholar 

  22. Wei J, Schaeffer N, Pileni M P. Solvent-mediated crystallization of nanocrystal 3D assemblies of silver nanocrystals: Unexpected superlattice ripening. Chem Mater, 2015, 28: 293–302

    Article  Google Scholar 

  23. Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109: 13857–13870

    Article  CAS  PubMed  Google Scholar 

  24. Shimizu T, Teranishi T, Hasegawa S, et al. Size evolution of alkanethiol- protected gold nanoparticles by heat treatment in the solid state. J Phys Chem B, 2003, 107: 2719–2724

    Article  CAS  Google Scholar 

  25. Wei J, Schaeffer N, Pileni M P. Ligand exchange governs the crystal structures in binary nanocrystal superlattices. J Am Chem Soc, 2015, 137: 14773–14784

    Article  CAS  PubMed  Google Scholar 

  26. Heuer-Jungemann A, Feliu N, Bakaimi I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev, 2019, 119: 4819–4880

    Article  CAS  PubMed  Google Scholar 

  27. Wikander K, Petit C, Holmberg K, et al. Size control and growth process of alkylamine-stabilized platinum nanocrystals: A comparison between the phase transfer and reverse micelles methods. Langmuir, 2006, 22: 4863–4868

    Article  CAS  PubMed  Google Scholar 

  28. Bagwe R P, Khilar K C. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir, 2000, 16: 905–910

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JiXian Liu or JianGuo Tang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51603109), the National One-Thousand Foreign Expert Program (Grant Nos. 2016YFE0110800 and 2017YFE0108300), and the 1st Class Discipline Program of Materials Science of Shandong Province.

Supporting Information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xue, J., Liu, Z. et al. Reversible phase-transfer mediated single reverse micelle towards synthesis of silver nanocrystals. Sci. China Technol. Sci. 63, 1863–1867 (2020). https://doi.org/10.1007/s11431-020-1572-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1572-3

Navigation