Skip to main content
Log in

Magnetic levitation using diamagnetism: Mechanism, applications and prospects

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

As a typical contact-free manipulation technique that removes friction and contamination risk, levitation has gradually become a preferred candidate for various applications. Magnetic levitation using diamagnetism, beyond Earnshaw’s theorem, is a kind of passive stable levitation that can be achieved at normal temperatures with no energy input. Appealingly, most seemingly nonmagnetic materials can be levitated in a magnetic field and can stabilize free levitation of magnetic materials. This review focuses on the fundamental principles of magnetic levitation using diamagnetism, with emphasis on its burgeoning applications. The theoretical basis associated with the magnetic levitation using diamagnetism is discussed by elucidating the characteristics of diamagnetic materials, and the key levitation mechanisms are clarified. Afterwards, state-of-the-art applications in various aspects, including sensing and measurement, actuating and micromanipulation, energy harvesting and magnetic gravity compensation, are summarized and compared. Finally, the review concludes with a brief outlook on future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foresti D, Nabavi M, Klingauf M, et al. Acoustophoretic contactless transport and handling of matter in air. Proc Natl Acad Sci USA, 2013, 110: 12549–12554

    Google Scholar 

  2. Timonen J V I, Grzybowski B A. Tweezing of magnetic and nonmagnetic objects with magnetic fields. Adv Mater, 2017, 29: 1603516

    Google Scholar 

  3. Hennet L, Cristiglio V, Kozaily J, et al. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources. Eur Phys J Spec Top, 2011, 196: 151–165

    Google Scholar 

  4. Yu Y, Qu S, Zang D, et al. Fast synthesis of Pt nanocrystals and Pt/microporous La2O3 materials using acoustic levitation. Nanoscale Res Lett, 2018, 13: 50

    Google Scholar 

  5. Conangla G P, Schell A W, Rica R A, et al. Motion control and optical interrogation of a levitating single nitrogen vacancy in vacuum. Nano Lett, 2018, 18: 3956–3961

    Google Scholar 

  6. Gao Q H, Yan G, Zou H X, et al. Density-based measurement and manipulation via magnetic levitation enhanced by the dual-Halbach array. IEEE Sens J, 2019, 20: 1730–1737

    Google Scholar 

  7. Marx V. Biophysics: Using sound to move cells. Nat Methods, 2014, 12: 41–44

    Google Scholar 

  8. Destgeer G, Sung H J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip, 2015, 15: 2722–2738

    Google Scholar 

  9. Gao D, Ding W, Nieto-Vesperinas M, et al. Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects. Light Sci Appl, 2017, 6: e17039

    Google Scholar 

  10. Arvanitaki A, Geraci A A. Detecting high-frequency gravitational waves with optically levitated sensors. Phys Rev Lett, 2013, 110: 071105

    Google Scholar 

  11. Anil-Inevi M, Yaman S, Yildiz A A, et al. Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation. Sci Rep, 2018, 8: 7239

    Google Scholar 

  12. Pallay M, Towfighian S. A reliable MEMS switch using electrostatic levitation. Appl Phys Lett, 2018, 113: 213102

    Google Scholar 

  13. Brandt E H. Levitation in physics. Science, 1989, 243: 349–355

    Google Scholar 

  14. Marzo A, Seah S A, Drinkwater B W, et al. Holographic acoustic elements for manipulation of levitated objects. Nat Commun, 2015, 6: 8661

    Google Scholar 

  15. Andrade MAB, Pérez N, Adamowski J C. Particle manipulation by a non-resonant acoustic levitator. Appl Phys Lett, 2015, 106: 014101

    Google Scholar 

  16. Ashkin A, Dziedzic J M. Optical levitation by radiation pressure. Appl Phys Lett, 1971, 19: 283–285

    Google Scholar 

  17. Huang N T, Zhang H L, Chung M T, et al. Recent advancements in optofluidics-based single-cell analysis: Optical on-chip cellular manipulation, treatment, and property detection. Lab Chip, 2014, 14: 1230–1245

    Google Scholar 

  18. Paradis P F, Ishikawa T, Lee G W, et al. Materials properties measurements and particle beam interactions studies using electrostatic levitation. Mater Sci Eng-R-Rep, 2014, 76: 1–53

    Google Scholar 

  19. Lee J, Kim K, Lee G W. Review of maglev train technologies. IEEE Trans Magn, 2006, 42: 1917–1925

    Google Scholar 

  20. Feng L, Shi W Y, Shoji E, et al. Effects of vertical, horizontal and rotational magnetic fields on convection in an electromagnetically levitated droplet. Int J Heat Mass Transfer, 2019, 130: 787–796

    Google Scholar 

  21. Ma K B, Postrekhin Y V, Chu W K. Superconductor and magnet levitation devices. Rev Sci Instruments, 2003, 74: 4989–5017

    Google Scholar 

  22. Simon M D, Geim A K. Diamagnetic levitation: Flying frogs and floating magnets (Invited). J Appl Phys, 2000, 87: 6200–6204

    Google Scholar 

  23. Küestler G. Diamagnetic levitation—Historical milestones. Rev Roum des Sci Tech Ser Electron, 2007, 52: 265–282

    Google Scholar 

  24. Beaugnon E, Tournier R. Levitation of organic materials. Nature, 1991, 349: 470

    Google Scholar 

  25. Berry M V, Geim A K. Of flying frogs and levitrons. Eur J Phys, 1999, 18: 307–313

    MathSciNet  Google Scholar 

  26. Geim A. Everyone’s magnetism. Phys Today, 1998, 51: 36–39

    Google Scholar 

  27. Geim A K, Simon M D, Boamfa M I, et al. Magnet levitation at your fingertips. Nature, 1999, 400: 323–324

    Google Scholar 

  28. Ikezoe Y, Hirota N, Nakagawa J, et al. Making water levitate. Nature, 1998, 393: 749–750

    Google Scholar 

  29. Catherall A T, Eaves L, King P J, et al. Floating gold in cryogenic oxygen. Nature, 2003, 422: 579

    Google Scholar 

  30. Liu W, Zhang W, Chen W. Simulation analysis and experimental study of the diamagnetically levitated electrostatic micromotor. J Magn Magn Mater, 2019, 492: 165634

    Google Scholar 

  31. Ando B, Baglio S, Marletta V, et al. A short-range inertial sensor exploiting magnetic levitation and an inductive readout strategy. IEEE Trans Instrum Meas, 2018, 67: 1238–1245

    Google Scholar 

  32. Kamal K Y, Herranz R, van Loon J J W A, et al. Evaluation of simulated microgravity environments induced by diamagnetic levitation of plant cell suspension cultures. Microgravity Sci Technol, 2016, 28: 309–317

    Google Scholar 

  33. Gao Q, Zhang W, Zou H, et al. Design and analysis of a bistable vibration energy harvester using diamagnetic levitation mechanism. IEEE Trans Magn, 2017, 53: 8700509

    Google Scholar 

  34. Hsu A, Chu W, Cowan C, et al. Diamagnetically levitated millirobots for heterogeneous 3D assembly. J Micro-Bio Robot, 2018, 14: 1–16

    Google Scholar 

  35. Billot M, Piat E, Abadie J, et al. External mechanical disturbances compensation with a passive differential measurement principle in nanoforce sensing using diamagnetic levitation. Sens Actuat A-Phys, 2016, 238: 266–275

    Google Scholar 

  36. Knoepfel H. Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use. New York: John Wiley & Sons, 2008. 484–488

    Google Scholar 

  37. Gijs M A M, Lacharme F, Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev, 2010, 110: 1518–1563

    Google Scholar 

  38. Rikken R S M, Nolte R J M, Maan J C, et al. Manipulation of microand nanostructure motion with magnetic fields. Soft Matter, 2014, 10: 1295–1308

    Google Scholar 

  39. Gao Q, Zhang W, Zou H, et al. Label-free manipulation via the magneto-Archimedes effect: Fundamentals, methodology and applications. Mater Horizons, 2019, 6: 1359–1379

    Google Scholar 

  40. Bandyopadhyay M, Dattagupta S. Dissipative diamagnetism—A case study for equilibrium and nonequilibrium statistical mechanics. J Stat Phys, 2006, 123: 1273–1284

    MathSciNet  MATH  Google Scholar 

  41. Haynes W. CRC Handbook of Chemistry and Physics. 95th ed. New York: CRC Press, 2012. 4, 131–136

    Google Scholar 

  42. Kuchel P, Chapman B, Bubb W, et al. Magnetic susceptibility: Solutions, emulsions, and cells. Concepts in Magnetic Resonance Part A, 2003, 18A: 56–71

    Google Scholar 

  43. Nemiroski A, Soh S, Kwok S W, et al. Tilted magnetic levitation enables measurement of the complete range of densities of materials with low magnetic permeability. J Am Chem Soc, 2016, 138: 1252–1257

    Google Scholar 

  44. Earnshaw S. On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans Camb Phil Soc, 1842, 7: 97–112

    Google Scholar 

  45. Simon M D, Heflinger L O, Geim A K. Diamagnetically stabilized magnet levitation. Am J Phys, 2001, 69: 702–713

    Google Scholar 

  46. Furlani E P. Analysis of particle transport in a magnetophoretic microsystem. J Appl Phys, 2006, 99: 024912

    Google Scholar 

  47. Häfeli U, Schütt W, Teller J, et al. Scientific and Clinical Applications of Magnetic Carriers. New York: Springer Science & Business Media, 2013. 218–219

    Google Scholar 

  48. Pelrine R. Diamagnetic levitation. Am Scientist, 2004, 92: 428–435

    Google Scholar 

  49. Salauddin M, Park J Y. Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array. Smart Mater Struct, 2017, 26: 035011

    Google Scholar 

  50. Barrot F, Sandtner J, Bleuler H. Acceleration sensor based on diamagnetic levitation. In: International Symposium on Vibration Control of Nonlinear Mechanisms and Structures. Munich, 2005. 130: 81–90

    Google Scholar 

  51. Küstler G. Extraordinary levitation height in a weight compensated diamagnetic levitation system with permanent magnets. IEEE Trans Magn, 2012, 48: 2044–2048

    Google Scholar 

  52. Xu Y, Cui Q, Kan R, et al. Realization of a diamagnetically levitating rotor driven by electrostatic field. IEEE/ASME Trans Mechatron, 2017, 22: 2387–2391

    Google Scholar 

  53. Webb M J, Palmgren P, Pal P, et al. A simple method to produce almost perfect graphene on highly oriented pyrolytic graphite. Carbon, 2011, 49: 3242–3249

    Google Scholar 

  54. Pinot P, Silvestri Z. New laser power sensor using diamagnetic levitation. Rev Sci Instruments, 2017, 88: 085003

    Google Scholar 

  55. Fischbach D B. Diamagnetic susceptibility of pyrolytic graphite. Phys Rev, 1961, 123: 1613–1614

    Google Scholar 

  56. Garmire D, Choo H, Kant R, et al. Diamagnetically levitated mems accelerometers. In: TRANSDUCERS 2007 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2007. 1203–1206

  57. Pinot P, Silvestri Z. New laser power sensor using weighing method. Meas Sci Technol, 2018, 29: 015103

    Google Scholar 

  58. Shimokawa Y, Matsuura Y, Hirano T, et al. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system. Rev Sci Instruments, 2016, 87: 125105

    Google Scholar 

  59. Lin F, Zhu Z, Zhou X, et al. Orientation control of graphene flakes by magnetic field: Broad device applications of macroscopically aligned graphene. Adv Mater, 2017, 29: 1604453

    Google Scholar 

  60. Niu C, Lin F, Wang Z M, et al. Graphene levitation and orientation control using a magnetic field. J Appl Phys, 2018, 123: 044302

    Google Scholar 

  61. Cugat O, Delamare J, Reyne G. Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn, 2003, 39: 3607–3612

    Google Scholar 

  62. Chen J Y, Zhou J B, Meng G. Diamagnetic bearings for mems: Performance and stability analysis. Mech Res Commun, 2008, 35: 546–552

    MATH  Google Scholar 

  63. Chen J, Zhou J, Meng G, et al. Evaluation of eddy-current effects on diamagnetic bearings for microsystems. IEEE Trans Ind Electron, 2009, 56: 964–972

    Google Scholar 

  64. Su Y, Xiao Z, Ye Z, et al. Micromachined graphite rotor based on diamagnetic levitation. IEEE Electron Device Lett, 2015, 36: 393–395

    Google Scholar 

  65. Kobayashi M, Abe J. Optical motion control of maglev graphite. J Am Chem Soc, 2012, 134: 20593–20596

    Google Scholar 

  66. Fujimoto M, Koshino M. Diamagnetic levitation and thermal gradient driven motion of graphite. Phys Rev B, 2019, 100: 045405

    Google Scholar 

  67. Suzuki H, Suzuki A, Sasaki S, et al. Preliminary experimental study on new contact-free linear drive system using diamagnetic material. In: International Conference on Magnetically Levitated Systems and Linear Drives. 2006. 199–203

  68. Kang S, Kim J, Pyo J B, et al. Design of magnetic force field for trajectory control of levitated diamagnetic graphite. Int J Precis Eng Manuf-Green Tech, 2018, 5: 341–347

    Google Scholar 

  69. Feng L, Zhang S, Jiang Y, et al. Microrobot with passive diamagnetic levitation for microparticle manipulations. J Appl Phys, 2017, 122: 243901

    Google Scholar 

  70. Nikolayev V S, Chatain D, Beysens D, et al. Magnetic gravity compensation. Microgravity Sci Technol, 2011, 23: 113–122

    Google Scholar 

  71. Herranz R, Anken R, Boonstra J, et al. Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology, 2013, 13: 1–17

    Google Scholar 

  72. Guevorkian K, Valles James M. J. Swimming paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. Proc Natl Acad Sci USA, 2006, 103: 13051–13056

    Google Scholar 

  73. Ge S, Nemiroski A, Mirica K, et al. Magnetic levitation in chemistry, materials science, and biochemistry. Angew Chem Int Edit, 2019, doi:https://doi.org/10.1002/anie.201903391

  74. Lu H M, Yin D C, Li H S, et al. A containerless levitation setup for liquid processing in a superconducting magnet. Rev Sci Instrum, 2008, 79: 093903

    Google Scholar 

  75. O’Brien M, Dunn S, Downes J, et al. Magneto-mechanical trapping of micro-diamonds at low pressures. Appl Phys Lett, 2019, 114: 053103

    Google Scholar 

  76. Hill R J A, Eaves L. Vibrations of a diamagnetically levitated water droplet. Phys Rev E, 2010, 81: 056312

    Google Scholar 

  77. Hill R J A, Eaves L. Shape oscillations of an electrically charged diamagnetically levitated droplet. Appl Phys Lett, 2012, 100: 114106

    Google Scholar 

  78. Temperton R H, Hill R J A, Sharp J S. Mechanical vibrations of magnetically levitated viscoelastic droplets. Soft Matter, 2014, 10: 5375–5379

    Google Scholar 

  79. Hill R J A, Eaves L. Nonaxisymmetric shapes of a magnetically levitated and spinning water droplet. Phys Rev Lett, 2008, 101: 234501

    Google Scholar 

  80. Liao L, Hill R J A. Shapes and fissility of highly charged and rapidly rotating levitated liquid drops. Phys Rev Lett, 2017, 119: 114501

    Google Scholar 

  81. Pacheco-Martinez H A, Liao L, Hill R J A, et al. Spontaneous orbiting of two spheres levitated in a vibrated liquid. Phys Rev Lett, 2013, 110: 154501

    Google Scholar 

  82. Beysens D, Chatain D, Evesque P, et al. High-frequency driven capillary flows speed up the gas-liquid phase transition in zero-gravity conditions. Phys Rev Lett, 2005, 95: 034502

    Google Scholar 

  83. Jérôme D, Alain M. On the bubble shape in a magnetically compensated gravity environment. J Fluid Mech, 2013, 716: R11

    MATH  Google Scholar 

  84. Lu Y, Ding C, Wang J, et al. An illuminated growth system for the study of Arabidopsis thaliana during diamagnetic levitation by a superconducting magnet. Adv Space Res, 2015, 55: 525–533

    Google Scholar 

  85. Herranz R, Larkin O J, Dijkstra C E, et al. Microgravity simulation by diamagnetic levitation: Effects of a strong gradient magnetic field on the transcriptional profile of drosophila melanogaster. BMC Genomics, 2012, 13: 52

    Google Scholar 

  86. Herranz R, Manzano A I, van Loon J J W A, et al. Proteomic signature of arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology, 2013, 13: 217–224

    Google Scholar 

  87. Lu H M, Lu X L, Zhai J H, et al. Effects of large gradient high magnetic field (LG-HMF) on the long-term culture of aquatic organisms: Planarians example. Bioelectromagnetics, 2018, 39: 428–440

    Google Scholar 

  88. Hill R J A, Larkin O J, Dijkstra C E, et al. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly. J R Soc Interface, 2012, 9: 1438–1449

    Google Scholar 

  89. Qian A R, Yin D C, Yang P F, et al. Application of diamagnetic levitation technology in biological sciences research. IEEE Trans Appl Supercond, 2013, 23: 3600305

    Google Scholar 

  90. Teixeira da Silva J, Dobrânszki J. Magnetic fields: How is plant growth and development impacted? Protoplasma, 2016, 253: 231–248

    Google Scholar 

  91. Liu Y, Wu Z, Liu Y, et al. Applications of gradient magnetic fields in studies of biological macromolecules. Chin Sci Bull, 2019, 64: 802–814

    Google Scholar 

  92. Boukallel M, Abadie J, Piat E. Levitated micro-nano force sensor using diamagnetic materials. In: 2003 IEEE International Conference on Robotics and Automation. IEEE, 2003. 3219–3224

  93. Palagummi S, Zou J, Yuan F G. A horizontal diamagnetic levitation based low frequency vibration energy harvester. J Vib Acoustics, 2015, 137: 061004

    Google Scholar 

  94. Küstler G. Simultaneous inline triple levitation in diamagnetic levitation system with permanent magnets. Electron Lett, 2015, 51: 1172–1174

    Google Scholar 

  95. Abadie J, Piat E, Oster S, et al. Modeling and experimentation of a passive low frequency nanoforce sensor based on diamagnetic levitation. Sens Actuat A-Phys, 2012, 173: 227–237

    Google Scholar 

  96. Clara S, Antlinger H, Hilber W, et al. A viscosity and density sensor based on diamagnetically stabilized levitation. IEEE Sens J, 2014, 15: 1937–1944

    Google Scholar 

  97. Clara S, Antlinger H, Abdallah A, et al. An advanced viscosity and density sensor based on diamagnetically stabilized levitation. Sens Actuat A-Phys, 2016, 248: 46–53

    Google Scholar 

  98. Zhang K, Su Y, Ding J, et al. Design and analysis of a gas flowmeter using diamagnetic levitation. IEEE Sens J, 2018, 18: 6978–6985

    Google Scholar 

  99. Aydemir G, Kosar A, Uvet H. Design and implementation of a passive micro flow sensor based on diamagnetic levitation. Sens Actuat A-Phys, 2019, 300: 111621

    Google Scholar 

  100. Hilber W, Jakoby B. A magnetic membrane actuator in composite technology utilizing diamagnetic levitation. IEEE Sens J, 2013, 13: 2786–2791

    Google Scholar 

  101. Moser R, Bleuler H. Precise positioning using electrostatic glass motor with diamagnetically suspended rotor. IEEE Trans Appl Supercond, 2002, 12: 937–939

    Google Scholar 

  102. Cansiz A, Hull J R. Stable load-carrying and rotational loss characteristics of diamagnetic bearings. IEEE Trans Magn, 2004, 40: 1636–1641

    Google Scholar 

  103. Cansiz A. Static and dynamic analysis of a diamagnetic bearing system. J Appl Phys, 2008, 103: 034510

    Google Scholar 

  104. Ho J N, Wang W C. Electric generator using a triangular diamagnetic levitating rotor system. Rev Sci Instruments, 2009, 80: 024702

    Google Scholar 

  105. Pelrine R, Hsu A, Wong-Foy A, et al. Optimal control of diamagnetically levitated milli robots using automated search patterns. In: 2016 International Conference on Manipulation, Automation and Robotics at Small Scales. IEEE, 2016. 1–6

  106. Pelrine R, Wong-Foy A, McCoy B, et al. Diamagnetically levitated robots: An approach to massively parallel robotic systems with unusual motion properties. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, 2012. 739–744

  107. Pelrine R, Hsu A, Cowan C, et al. Multi-agent systems using diamagnetic micro manipulation—From floating swarms to mobile sensors. In: 2017 International Conference on Manipulation, Automation and Robotics at Small Scales. IEEE, 2017. 1–6

  108. Hsu A, Cowan C, Chu W, et al. Automated 2D micro-assembly using diamagnetically levitated milli-robots. In: 2017 International Conference on Manipulation, Automation and Robotics at Small Scales. IEEE, 2017. 1–6

  109. Hsu A, Wong-Foy A, Pelrine R. Ferrofluid levitated micro/millirobots. In: 2018 International Conference on Manipulation, Automation and Robotics at Small Scales. IEEE, 2018. 1–7

  110. Hunter E E, Steager E B, Hsu A, et al. Nanoliter fluid handling for microbiology via levitated magnetic microrobots. IEEE Robot Autom Lett, 2019, 4: 997–1004

    Google Scholar 

  111. Pelrine R, Hsu A, Wong-Foy A. Methods and results for rotation of diamagnetic robots using translational designs. In: 2019 International Conference on Manipulation, Automation and Robotics at Small Scales. IEEE, 2019. 1–6

  112. Liu L, Yuan F G. Nonlinear vibration energy harvester using diamagnetic levitation. Appl Phys Lett, 2011, 98: 203507

    Google Scholar 

  113. Liu L, Yuan F G. Diamagnetic levitation for nonlinear vibration energy harvesting: Theoretical modeling and analysis. J Sound Vib, 2013, 332: 455–464

    Google Scholar 

  114. Wang X Y, Palagummi S, Liu L, et al. A magnetically levitated vibration energy harvester. Smart Mater Struct, 2013, 22: 055016

    Google Scholar 

  115. Palagummi S, Yuan F G. An optimal design of a mono-stable vertical diamagnetic levitation based electromagnetic vibration energy harvester. J Sound Vib, 2015, 342: 330–345

    Google Scholar 

  116. Palagummi S V, Yuan F G. An enhanced performance of a horizontal diamagnetic levitation mechanism-based vibration energy harvester for low frequency applications. J Intelligent Material Syst Struct, 2016, 28: 578–594

    Google Scholar 

  117. Palagummi S, Yuan F G. A bi-stable horizontal diamagnetic levitation based low frequency vibration energy harvester. Sens Actuat A-Phys, 2018, 279: 743–752

    Google Scholar 

  118. Young J, Biggs H, Yee S, et al. Optical control and manipulation of diamagnetically levitated pyrolytic graphite. AIP Adv, 2019, 9: 125038

    Google Scholar 

  119. Frenkel M, Danchuk V, Multanen V, et al. Toward an understanding of magnetic displacement of floating diamagnetic bodies, I: Experimental findings. Langmuir, 2018, 34: 6388–6395

    Google Scholar 

  120. Dodoo J, Stokes A A. Shaping and transporting diamagnetic sessile drops. Biomicrofluidics, 2019, 13: 064110

    Google Scholar 

  121. Hayakawa M, Vialetto J, Anyfantakis M, et al. Effect of moderate magnetic fields on the surface tension of aqueous liquids: A reliable assessment. RSC Adv, 2019, 9: 10030–10033

    Google Scholar 

  122. Nguyen J, Valter Conca D, Stein J, et al. Magnetic control of graphitic microparticles in aqueous solutions. Proc Natl Acad Sci USA, 2019, 116: 2425–2434

    Google Scholar 

  123. Lin F, Yang G, Niu C, et al. Planar alignment of graphene sheets by a rotating magnetic field for full exploitation of graphene as a 2D material. Adv Funct Mater, 2018, 28: 1805255

    Google Scholar 

  124. Küstler G, Nemoianu I, Cazacu E. Theoretical and experimental investigation of multiple horizontal diamagnetically stabilized levitation with permanent magnets. IEEE Trans Magn, 2012, 48: 4793–4801

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenMing Zhang.

Additional information

This work was supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2019-01-07-00-02-E00030), the National Science Fund for Distinguished Young Scholars (Grant No. 11625208), and the Program of Shanghai Academic/Technology Research Leader (Grant No. 19XD1421600).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Yan, H., Zou, H. et al. Magnetic levitation using diamagnetism: Mechanism, applications and prospects. Sci. China Technol. Sci. 64, 44–58 (2021). https://doi.org/10.1007/s11431-020-1550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1550-1

Navigation