Skip to main content
Log in

Dual-wavelength flash Raman mapping method for measuring thermal diffusivity of the suspended nanowire

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present a dual-wavelength flash Raman (DFR) mapping method for measuring the thermal diffusivity of a suspended nanowire. A heating pulse is used to heat the nanowire sample, and a probing pulse of different wavelength is used to measure the increase in temperature. The laser absorption coefficient can be eliminated by normalization, and the thermal diffusivity of the sample can be extracted from the normalized temperature increase. An infinite heat conduction model is used in this method to avoid the influence of boundary thermal resistance. By changing the position of the probing laser center, the measurement sensitivity of thermal diffusivity can be further improved. The position of maximum sensitivity is influenced by the thermal diffusivity of the nanowire, width of the heating pulse, radius of the heating laser spot, and characteristic length of the sample. To comprehensively analyze the influences of the various parameters, obtain the best measurement conditions, and attain maximum sensitivity, we propose a dimensionless physical model to analyze the heat conduction of the suspended nanowire. Based on the analysis of the best dimensionless parameters, the corresponding appropriate measurement conditions can be determined. Sensitivity analysis shows that when the radius of the heating laser spot is 1% of the length of the nanowire, the sensitivity of the DFR mapping method can be more than four times that of the concentric DFR method for measuring the thermal diffusivity of the nanowire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett, 2005, 95: 065502

    Article  Google Scholar 

  2. Zhang X, Zhang Q, Cao B, et al. Experimental studies on thermal and electrical properties of platinum nanofilms. Chin Phys Lett, 2006, 23: 936–938

    Article  Google Scholar 

  3. Zhang X, Shi X G, Ma W G. Development of multi-physical properties comprehensive measurement system for micro/nanoscale filamentary materials (in Chinese). Sci Sin Tech, 2018, 48: 403–414

    Google Scholar 

  4. Miao T, Shi S, Yan S, et al. Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube. J Appl Phys, 2016, 120: 124302

    Article  Google Scholar 

  5. Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. Int J Thermophys, 2000, 21: 965–980

    Article  Google Scholar 

  6. Cahill D G, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J Heat Transfer, 2002, 124: 223–241

    Article  Google Scholar 

  7. Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene. Science, 2010, 328: 213–216

    Article  Google Scholar 

  8. Yu C, Saha S, Zhou J, et al. Thermal contact resistance and thermal conductivity of a carbon nanofiber. J Heat Transfer, 2006, 128: 234–239

    Article  Google Scholar 

  9. Cahill D G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev Sci Instruments, 2004, 75: 5119–5122

    Article  Google Scholar 

  10. Koh Y K, Singer S L, Kim W, et al. Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J Appl Phys, 2009, 105: 054303

    Article  Google Scholar 

  11. Ma W, Miao T, Zhang X, et al. Comprehensive study of thermal transport and coherent acoustic-phonon wave propagation in thin metal film-substrate by applying picosecond laser pump-probe method. J Phys Chem C, 2015, 119: 5152–5159

    Article  Google Scholar 

  12. Yan S, Dong C, Miao T, et al. Long delay time study of thermal transport and thermal stress in thin Pt film-glass substrate system by time-domain thermoreflectance measurements. Appl Thermal Eng, 2017, 111: 1433–1440

    Article  Google Scholar 

  13. Zhu J, Tang D, Wang W, et al. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. J Appl Phys, 2010, 108: 094315

    Article  Google Scholar 

  14. Schmidt A J, Cheaito R, Chiesa M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev Sci Instruments, 2009, 80: 094901

    Article  Google Scholar 

  15. Schmidt A J, Cheaito R, Chiesa M. Characterization of thin metal films via frequency-domain thermoreflectance. J Appl Phys, 2010, 107: 024908

    Article  Google Scholar 

  16. Li Q, Liu C, Wang X, et al. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology, 2009, 20: 145702

    Article  Google Scholar 

  17. Soini M, Zardo I, Uccelli E, et al. Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating. Appl Phys Lett, 2010, 97: 263107

    Article  Google Scholar 

  18. Lee J U, Yoon D, Kim H, et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys Rev B, 2011, 83: 081419

    Article  Google Scholar 

  19. Cai W, Moore A L, Zhu Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett, 2010, 10: 1645–1651

    Article  Google Scholar 

  20. Li M, Li C, Wang J, et al. Parallel measurement of conductive and convective thermal transport of micro/nanowires based on Raman mapping. Appl Phys Lett, 2015, 106: 253108

    Article  Google Scholar 

  21. Liu J, Li T, Hu Y, et al. Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs. Nanoscale, 2017, 9: 1496–1501

    Article  Google Scholar 

  22. Liu J H, Xie H H, Hu Y D, et al. Thermal transport in suspended SWCNTs at high heat fluxes. Int J Heat Mass Transfer, 2017, 108: 572–576

    Article  Google Scholar 

  23. Deem H W, Wood W D. Flash thermal-diffusivity measurements using a laser. Rev Sci Instruments, 1962, 33: 1107–1109

    Article  Google Scholar 

  24. Li Q Y, Zhang X, Hu Y D. Laser flash Raman spectroscopy method for thermophysical characterization of 2D nanomaterials. Thermochim Acta, 2014, 592: 67–72

    Article  Google Scholar 

  25. Liu J, Wang H, Hu Y, et al. Laser flash-Raman spectroscopy method for the measurement of the thermal properties of micro/nano wires. Rev Sci Instruments, 2015, 86: 014901

    Article  Google Scholar 

  26. Xu S, Wang T, Hurley D, et al. Development of time-domain differential Raman for transient thermal probing of materials. Opt Express, 2015, 23: 10040–10056

    Article  Google Scholar 

  27. Wang T, Xu S, Hurley D H, et al. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement. Opt Lett, 2016, 41: 80–83

    Article  Google Scholar 

  28. Li C, Xu S, Yue Y, et al. Thermal characterization of carbon nanotube fiber by time-domain differential Raman. Carbon, 2016, 103: 101–108

    Article  Google Scholar 

  29. Li Q Y, Ma W G, Zhang X. Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials. Int J Heat Mass Transfer, 2016, 95: 956–963

    Article  Google Scholar 

  30. Li Q Y, Zhang X, Takahashi K. Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures. Int J Heat Mass Transfer, 2018, 125: 1230–1239

    Article  Google Scholar 

  31. Li Q Y, Katakami K, Ikuta T, et al. Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method. Carbon, 2019, 141: 92–98

    Article  Google Scholar 

  32. Liu J, Liu H, Ma W, et al. Non-contact T-type Raman method for measurement of thermophysical properties of micro-/nanowires. Rev Sci Instruments, 2019, 90: 044901

    Article  Google Scholar 

  33. Li Q Y, Xia K, Zhang J, et al. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. Nanoscale, 2017, 9: 10784–10793

    Article  Google Scholar 

  34. Fan A, Hu Y, Ma W, et al. Dual-wavelength laser flash raman spectroscopy method for in-situ measurements of the thermal diffusivity: Principle and experimental verification. J Therm Sci, 2019, 28: 159–168

    Article  Google Scholar 

  35. Hu Y, Fan A, Liu J, et al. A dual-wavelength flash Raman method for simultaneously measuring thermal diffusivity and line thermal contact resistance of an individual supported nanowire. Thermochim Acta, 2020, 683: 178473

    Article  Google Scholar 

  36. Fan A, Hu Y, Wang H, et al. Dual-wavelength laser flash Raman mapping method for measuring thermal diffusivity of suspended 2D nanomaterials. Int J Heat Mass Transfer, 2019, 143: 118460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51827807 and 51636002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Fan, A., Wang, H. et al. Dual-wavelength flash Raman mapping method for measuring thermal diffusivity of the suspended nanowire. Sci. China Technol. Sci. 63, 748–754 (2020). https://doi.org/10.1007/s11431-019-9558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-9558-3

Keywords

Navigation