Skip to main content
Log in

Development of integrated two-stage thermoelectric generators for large temperature difference

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Multi-stage thermoelectric (TE) modules can withstand a large temperature difference and can be used to obtain a high conversion efficiency. In this study, two-stage PbTe/Bi2Te3 TE modules were developed with an enhanced efficiency through a comprehensive study of device structure design, module fabrication, and performance evaluation. PbTe-based AgPbmSbTem+2 (abbreviated as LAST) is a typically high ZT material, while the corresponding TE module was rarely reported so far. How to utilize LAST to fabricate high efficiency TE modules therefore remains a central problem. Finite element simulation indicates that the temperature stability of the two-stage module for LAST is better than that of two-segmented module. Compared to Cu, Ni, and Ni-Fe alloys, Co-Fe alloy is an effective metallization layer for PbTe due to its low contact resistance and thin diffusion layer. By sintering a slice of Cu on TE legs, pure tinfoil can be used as a common welding method for mid-temperature TE modules. A maximum efficiency (ηmax) of 9.5% was achieved in the range of 303 to 923 K in an optimized PbTe/Bi2Te3 based two-stage module, which was almost twice that of a commercial TE module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gayner C, Kar K K. Recent advances in thermoelectric materials. Prog Mater Sci, 2016, 83: 330–382

    Article  Google Scholar 

  2. Han C, Sun Q, Li Z, et al. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv Energy Mater, 2016, 6: 1600498

    Article  Google Scholar 

  3. Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455

    Article  Google Scholar 

  4. Rowe D M. CRC Handbook of Thermoelectrics. New York: CRC Press, 1995. 32–39

    Book  Google Scholar 

  5. Goldsmid H J. Introduction to Thermoelectricicty. Heidelberg: Springer, 2010

    Book  Google Scholar 

  6. Li J F, Pan Y, Wu C F, et al. Processing of advanced thermoelectric materials. Sci China Tech Sci, 2017, 60: 1347–1364

    Article  Google Scholar 

  7. Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320: 634–638

    Article  Google Scholar 

  8. Li J, Tan Q, Li J F, et al. BiSbTe-based nanocomposites with high ZT The effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater, 2013, 23: 4317–4323

    Article  Google Scholar 

  9. Liu W S, Zhang Q, Lan Y, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater, 2011, 1: 577–587

    Article  Google Scholar 

  10. Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk thermo-electric materials with high figure of merit. Science, 2004, 303: 818–821

    Article  Google Scholar 

  11. Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321: 554–557

    Article  Google Scholar 

  12. Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473: 66–69

    Article  Google Scholar 

  13. Zhang Q, Wang H, Zhang Q, et al. Effect of silicon and sodium on thermoelectric properties of thallium-doped lead telluride-based materials. Nano Lett, 2012, 12: 2324–2330

    Article  Google Scholar 

  14. Zhang Q, Wang H, Liu W, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ Sci, 2012, 5: 5246–5251

    Article  Google Scholar 

  15. Wang H, Pei Y, LaLonde A D, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc Natl Acad Sci USA, 2012, 109: 9705–9709

    Article  Google Scholar 

  16. Joshi G, Lee H, Lan Y, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett, 2008, 8: 4670–4674

    Article  Google Scholar 

  17. Wang X W, Lee H, Lan Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett, 2008, 93: 193121

    Article  Google Scholar 

  18. Liu W, Jie Q, Kim H S, et al. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater, 2015, 87: 357–376

    Article  Google Scholar 

  19. Zhao L D, Lo S H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377

    Article  Google Scholar 

  20. Zhao L D, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351: 141–144

    Article  Google Scholar 

  21. Duong A T, Nguyen V Q, Duvjir G, et al. Achieving ZT=2.2 with Bidoped n-type SnSe single crystals. Nat Commun, 2016, 7: 13713

    Article  Google Scholar 

  22. Liu H, Yuan X, Lu P, et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−xIx. Adv Mater, 2013, 25: 6607–6612

    Article  Google Scholar 

  23. Olvera A A, Moroz N A, Sahoo P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci, 2017, 10: 1668–1676

    Article  Google Scholar 

  24. Zhao L D, Berardan D, Pei Y L, et al. Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett, 2010, 97: 092118

    Article  Google Scholar 

  25. Zhao L D, He J, Berardan D, et al. BiCuSeO oxyselenides: New promising thermoelectric materials. Energy Environ Sci, 2014, 7: 2900–2924

    Article  Google Scholar 

  26. Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321: 1457–1461

    Article  Google Scholar 

  27. Yang J, Stabler F R. Automotive applications of thermoelectric materials. J Elec Materi, 2009, 38: 1245–1251

    Article  Google Scholar 

  28. Fitriani, Ovik R, Long B D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew Sustain Energy Rev, 2016, 64: 635–659

    Article  Google Scholar 

  29. Ikoma K, Munekiyo M, Furuya K, et al. Thermoelectric module and generator for gasoline engine vehicles. In: Seventeenth International Conference on Thermoelectrics. Nagoya: IEEE, 1998. 464–467

    Google Scholar 

  30. Amatya R, Ram R J. Solar thermoelectric generator for micropower applications. J Elec Mater, 2010, 39: 1735–1740

    Article  Google Scholar 

  31. Hu X, Nagase K, Jood P, et al. Power generation evaluated on a bismuth telluride unicouple module. J Elec Mater, 2015, 44: 1785–1790

    Article  Google Scholar 

  32. Chen W H, Wu P H, Wang X D, et al. Power output and efficiency of a thermoelectric generator under temperature control. Energy Convers Manage, 2016, 127: 404–415

    Article  Google Scholar 

  33. Salvador J R, Cho J Y, Ye Z, et al. Conversion efficiency of skutterudite-based thermoelectric modules. Phys Chem Chem Phys, 2014, 16: 12510–12520

    Article  Google Scholar 

  34. Xiao J, Yang T, Li P, et al. Thermal design and management for performance optimization of solar thermoelectric generator. Appl Energy, 2012, 93: 33–38

    Article  Google Scholar 

  35. El-Genk M S, Saber H H, Caillat T, et al. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers Manage, 2006, 47: 174–200

    Article  Google Scholar 

  36. Zhang Q, Liao J, Tang Y, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ Sci, 2017, 10: 956–963

    Article  Google Scholar 

  37. Kraemer D, Jie Q, McEnaney K, et al. concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat Energy, 2016, 1: 16153

    Article  Google Scholar 

  38. Manikandan S, Kaushik S C. The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator. Energy, 2016, 100: 227–237

    Article  Google Scholar 

  39. Angeline A A, Jayakumar J, Asirvatham L G, et al. Power generation enhancement with hybrid thermoelectric generator using biomass waste heat energy. Exp Thermal Fluid Sci, 2017, 85: 1–12

    Article  Google Scholar 

  40. Hu X, Jood P, Ohta M, et al. Power generation from nanostructured PbTe-based thermoelectrics: Comprehensive development from materials to modules. Energy Environ Sci, 2016, 9: 517–529

    Article  Google Scholar 

  41. Li S, Pei J, Liu D, et al. Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering. Energy, 2016, 113: 35–43

    Article  Google Scholar 

  42. Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J Am Chem Soc, 2008, 130: 4527–4532

    Article  Google Scholar 

  43. Li Z Y, Li J F. Fine-grained and nanostructured AgPbmSbTem+2 alloys with high thermoelectric figure of merit at medium temperature. Adv Energy Mater, 2014, 4: 1300937

    Article  Google Scholar 

  44. Zhao L D, Dravid V P, Kanatzidis M G. The panoscopic approach to high performance thermoelectrics. Energy Environ Sci, 2014, 7: 251–268

    Article  Google Scholar 

  45. Kosuga A, Uno M, Kurosaki K, et al. Thermoelectric properties of Ag1-xPb18SbTe20 (x=0, 0.1, 0.3). J Alloys Compd, 2005, 387: 52–55

    Article  Google Scholar 

  46. Kosuga A, Uno M, Kurosaki K, et al. Thermoelectric properties of stoichiometric Ag1-xPb18SbTe20 (x=0, 0.1, 0.2). J Alloys Compd, 2005, 391: 288–291

    Article  Google Scholar 

  47. Kosuga A, Kurosaki K, Muta H, et al. Thermoelectric properties of ptype (AgSbTe2)x(Pb0.5Sn0.5Te)1-x (x=0.05, 0.09, 0.2). J Alloys Compd, 2006, 416: 218–221

    Article  Google Scholar 

  48. Dow H S, Oh M W, Park S D, et al. Thermoelectric properties of AgPbmSbTem+2 (12≤m≤26) at elevated temperature. J Appl Phys, 2009, 105: 113703

    Article  Google Scholar 

  49. Li H, Cai K F, Wang H F, et al. The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. J Solid State Chem, 2009, 182: 869–874

    Article  Google Scholar 

  50. Li Z Y, Li J F. Thermoelectric performance of AgPbxSbTe20 (x=17 to 23) bulk materials derived from large-particle raw materials. J Elec Mater, 2012, 41: 1365–1369

    Article  Google Scholar 

  51. Yu Z, Li J F, Zhang B P, et al. Synthesis and thermoelectric properties of LAST system bulk materials: Substitution of sulfur for tellurium. J Elec Mater, 2012, 41: 1337–1342

    Article  Google Scholar 

  52. Li Z Y, Zou M, Li J F. Comparison of thermoelectric performance of AgPbxSbTe20 (x=20–22.5) polycrystals fabricated by different methods. J Alloys Compd, 2013, 549: 319–323

    Article  Google Scholar 

  53. Li Z Y, Li J F, Zhao W Y, et al. PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion. Appl Phys Lett, 2014, 104: 113905

    Article  Google Scholar 

  54. Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414–418

    Article  Google Scholar 

  55. El-Genk M S, Saber H H, Caillat T. Efficient segmented thermoelectric unicouples for space power applications. Energy Convers Manage, 2003, 44: 1755–1772

    Article  Google Scholar 

  56. Liu C, Pan X, Zheng X, et al. An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust. J Energy Institute, 2016, 89: 271–281

    Article  Google Scholar 

  57. Hsiao Y Y, Chang W C, Chen S L. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 2010, 35: 1447–1454

    Article  Google Scholar 

  58. Mitrani D, Tome J A, Salazar J, et al. Methodology for extracting thermoelectric module parameters. IEEE Trans Instrum Meas, 2004, 54: 1548–1552

    Article  Google Scholar 

  59. Tsai H L, Lin J M. Model building and simulation of thermoelectric module using Matlab/Simulink. J Elec Mater, 2010, 39: 2105–2111

    Article  Google Scholar 

  60. Jang J Y, Tsai Y C, Wu C W. A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink. Energy, 2013, 53: 270–281

    Article  Google Scholar 

  61. Lin T Y, Liao C N, Wu A T. Evaluation of diffusion barrier between lead-free solder systems and thermoelectric materials. J Elec Mater, 2012, 41: 153–158

    Article  Google Scholar 

  62. Liu W, Wang H, Wang L, et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J Mater Chem A, 2013, 1: 13093

    Article  Google Scholar 

  63. Skomedal G, Holmgren L, Middleton H, et al. Design, assembly and characterization of silicide-based thermoelectric modules. Energy Convers Manage, 2016, 110: 13–21

    Article  Google Scholar 

  64. Kraemer D, Sui J, McEnaney K, et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ Sci, 2015, 8: 1299–1308

    Article  Google Scholar 

  65. D’Angelo J, Case E D, Matchanov N, et al. Electrical, thermal, and mechanical characterization of novel segmented-leg thermoelectric modules. J Elec Mater, 2011, 40: 2051–2062

    Article  Google Scholar 

  66. Hori Y, Ito T. Fabrication of 500 degrees C class thermoelectric module and evaluation of its high temperature stability. In: 2006 25th International Conference on Thermoelectrics. Vienna: IEEE, 2006. 642–645

    Chapter  Google Scholar 

  67. Guo J Q, Geng H Y, Ochi T, et al. Development of skutterudite thermoelectric materials and modules. J Elec Mater, 2012, 41: 1036–1042

    Article  Google Scholar 

  68. Muto A, Yang J, Poudel B, et al. Skutterudite unicouple characterization for energy harvesting applications. Adv Energy Mater, 2013, 3: 245–251

    Article  Google Scholar 

  69. Kaibe H, Aoyama I, Mukoujima M, et al. Development of thermoelectric generating stacked modules aiming for 15% of conversion efficiency. In: 24th International Conference on Thermoelectrics, 2005. Clemson, IEEE, 2005. 242–247

    Google Scholar 

  70. Anatychuk L I, Vikhor L N, Strutynska L T, et al. Segmented generator modules using Bi2Te3-based materials. J Elec Mater, 2011, 40: 957–961

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BoPing Zhang or JingFeng Li.

Additional information

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFB0703600) and the National Natural Science Foundation of China (Grant No. 11474176). It is very grateful to Mr. Jin-cheng Liao at Shanghai Institute of Ceramics for his help on module performance measurement. It is very thankful to HuaBei Cooling Device Co. for providing the single Bi2Te3 TE module using commercial Bi2Te3 materials.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, J., Li, L., Liu, D. et al. Development of integrated two-stage thermoelectric generators for large temperature difference. Sci. China Technol. Sci. 62, 1596–1604 (2019). https://doi.org/10.1007/s11431-019-9498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-9498-y

En

Navigation