Skip to main content
Log in

A deterministic FE contact analysis of 3D rough surfaces with textures and comparison with classic statistical contact models

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Accurate contact calculations of real rough surfaces are fundamental but complicated. The model-based methods are convenient and straightforward. But these methods ignore some factors and may lead to less accurate results. This is especially true when considering multi-scale topographic features of engineering rough surfaces. Based on artificially generated rough surfaces, the deterministic contact analysis of two 3D rough surfaces is conducted by the finite element method (FEM). The calculations show that when the separation between surfaces reduces, results of classic model-based methods are quite different from those of this study, especially when the roughness distribution and textures are considered. As friction pairs are working under increasing harsh conditions, the accurate contact calculation in this paper will be of great significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. Proc R Soc Lond A, 1966, 295: 300–319

    Article  Google Scholar 

  2. Hertz H. Über die Berührung fester elastischer Körper und über die Harte. Gesammelte Werke Bd, 1882, 1: 156–171

    MATH  Google Scholar 

  3. Greenwood J A, Tripp J H. The elastic contact of rough spheres. J Appl Mech, 1967, 34: 153–159

    Article  Google Scholar 

  4. Chang W R, Etsion I, Bogy D B. An elastic-plastic model for the contact of rough surfaces. J Tribol, 1987, 109: 257–263

    Article  Google Scholar 

  5. Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat. J Appl Mech, 2002, 69: 657–662

    Article  Google Scholar 

  6. Kogut L, Etsion I. A finite element based elastic-plastic model for the contact of rough surfaces. Tribol Trans, 2003, 46: 383–390

    Article  Google Scholar 

  7. Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces. J Tribol, 1991, 113: 1–11

    Article  Google Scholar 

  8. Persson B N J. Contact mechanics for randomly rough surfaces. Surf Sci Rep, 2006, 61: 201–227

    Article  Google Scholar 

  9. Jackson R L, Streator J L. A multi-scale model for contact between rough surfaces. Wear, 2006, 261: 1337–1347

    Article  Google Scholar 

  10. Miao X, Huang X. A complete contact model of a fractal rough surface. Wear, 2014, 309: 146–151

    Article  Google Scholar 

  11. Li R, Meng X, Xie Y. A new coupling tribodynamic model of crosshead slipper-guide system and piston skirt-liner system of low-speed marine diesel engines. Tribol Int, 2018, 117: 189–205

    Article  Google Scholar 

  12. Sadeghi F, Jalalahmadi B, Slack T S, et al. A review of rolling contact fatigue. J Tribol, 2009, 131: 041403

    Article  Google Scholar 

  13. Lu W, Thouless M D, Hu Z, et al. CASL structural mechanics modeling of grid-to-rod fretting (GTRF). JOM, 2016, 68: 2922–2929

    Article  Google Scholar 

  14. Chen W W, Liu S, Wang Q J. Fast Fourier transform based numerical methods for elasto-plastic contacts of nominally flat surfaces. J Appl Mech, 2008, 75: 011022

    Article  Google Scholar 

  15. Zhang S, Wang W, Zhao Z. The effect of surface roughness characteristics on the elastic-plastic contact performance. Tribol Int, 2014, 79: 59–73

    Article  Google Scholar 

  16. Zhao B, Zhang S, Keer L M. Semi-analytical and numerical analysis of sliding asperity interaction for power-law hardening materials. Wear, 2016, 364–365: 184–192

    Article  Google Scholar 

  17. Nyqvist J, Kadiric A, Ioannides S, et al. Semi-analytical model for rough multilayered contacts. Tribol Int, 2015, 87: 98–112

    Article  Google Scholar 

  18. Peng W, Bhushan B. Transient analysis of sliding contact of layered elastic/plastic solids with rough surfaces. Microsyst Technol, 2003, 9: 340–345

    Article  Google Scholar 

  19. Bemporad A, Paggi M. Optimization algorithms for the solution of the frictionless normal contact between rough surfaces. Int J Solids Struct, 2015, 69–70: 94–105

    Article  Google Scholar 

  20. Rey V, Anciaux G, Molinari J F. Normal adhesive contact on rough surfaces: Efficient algorithm for FFT-based BEM resolution. Comput Mech, 2017, 60: 69–81

    Article  MathSciNet  Google Scholar 

  21. Jackson R L, Green I. A finite element study of elasto-plastic hemispherical contact against a rigid flat. J Tribol, 2005, 127: 343–354

    Article  Google Scholar 

  22. Andersen D H, Zhang Z L. Contact area on rough surface of nonlinear isotropic brittle materials. Wear, 2011, 271: 1017–1028

    Article  Google Scholar 

  23. Angadi S V, Jackson R L, Choe S, et al. A multiphysics finite element model of a 35A automotive connector including multiscale rough surface contact. J Electron Packag, 2012, 134: 011001

    Article  Google Scholar 

  24. Wagner P, Wriggers P, Klapproth C, et al. Multiscale FEM approach for hysteresis friction of rubber on rough surfaces. Comput Methods Appl Mech Eng, 2015, 296: 150–168

    Article  MathSciNet  Google Scholar 

  25. Zhao B, Zhang S, Qiu Z. Analytical asperity interaction model and numerical model of multi-asperity contact for power hardening materials. Tribol Int, 2015, 92: 57–66

    Article  Google Scholar 

  26. Bakolas V. Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces. Wear, 2003, 254: 546–554

    Article  Google Scholar 

  27. Wu J J. Simulation of rough surfaces with FFT. Tribol Int, 2000, 33: 47–58

    Article  Google Scholar 

  28. Wu J J. Simulation of non-Gaussian surfaces with FFT. Tribol Int, 2004, 37: 339–346

    Article  Google Scholar 

  29. Sahoo P, Ghosh N. Finite element contact analysis of fractal surfaces. J Phys D-Appl Phys, 2007, 40: 4245–4252

    Article  Google Scholar 

  30. Pei L, Hyun S, Molinari J F, et al. Finite element modeling of elastoplastic contact between rough surfaces. J Mech Phys Solids, 2005, 53: 2385–2409

    Article  Google Scholar 

  31. Poulios K, Klit P. Implementation and applications of a finite-element model for the contact between rough surfaces. Wear, 2013, 303: 1–8

    Article  Google Scholar 

  32. An B, Wang X, Xu Y, et al. Deterministic elastic-plastic modelling of rough surface contact including spectral interpolation and comparison to theoretical models. Tribol Int, 2019, 135: 246–258

    Article  Google Scholar 

  33. Poon C Y, Bhushan B. Numerical contact and stiction analyses of Gaussian isotropic surfaces for magnetic head slider/disk contact. Wear, 1996, 202: 68–82

    Article  Google Scholar 

  34. Hu Y Z, Tonder K. Simulation of 3D random rough surface by 2-D digital filter and Fourier analysis. Int J Machine Tools Manufacture, 1992, 32: 83–90

    Article  Google Scholar 

  35. Fang C, Meng X, Xie Y. A piston tribodynamic model with deterministic consideration of skirt surface grooves. Tribol Int, 2017, 110: 232–251

    Article  Google Scholar 

  36. Shi X, Zou Y. A comparative study on equivalent modeling of rough surfaces contact. J Tribol, 2018, 140: 041402

    Article  Google Scholar 

  37. Reichert S, Lorentz B, Albers A. Influence of flattening of rough surface profiles on the friction behaviour of mixed lubricated contacts. Tribol Int, 2016, 93: 614–619

    Article  Google Scholar 

  38. Kucharski S, Starzynski G. Study of contact of rough surfaces: Modeling and experiment. Wear, 2014, 311: 167–179

    Article  Google Scholar 

  39. Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces. Proc Inst Mech Eng, 1970, 185: 625–633

    Article  Google Scholar 

  40. Gu C, Meng X, Xie Y, et al. Effects of surface texturing on ring/liner friction under starved lubrication. Tribol Int, 2016, 94: 591–605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangHui Meng.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51875344 & 51705492).

Electronic supplementary material

11431_2019_1536_MOESM1_ESM.docx

A deterministic FE contact analysis of 3-D rough surfaces with textures and comparison with classic statistical contact models

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Meng, X., Lyu, B. et al. A deterministic FE contact analysis of 3D rough surfaces with textures and comparison with classic statistical contact models. Sci. China Technol. Sci. 64, 297–316 (2021). https://doi.org/10.1007/s11431-019-1536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1536-6

Keywords

Navigation