Skip to main content
Log in

Progress in modification of silk fibroin fiber

  • Review
  • Special Topic: Smart and Functional Fiber Materials
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Silk fibroin fiber is a natural protein fiber. It is moisturizing, breathable, soft and skin-friendly. However, unmodified silk fibroin fiber is easy to be oxidized and faded. In this paper, the recent progress in modification of silk fibroin fiber is introduced, including the composite modification, feeding modification, genetic engineering modification, spinning technology and regulating the physiological environment modification. Simultaneously, the future development trend for the modification of silk fibroin fiber is also prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu B, Song Y, Jin L, et al. Silk structure and degradation. Colloids Surfs B-Biointerfaces, 2015, 131: 122–128

    Article  Google Scholar 

  2. Yang M Y. Silk-based biomaterials. Microsc Res Tech, 2017, 80: 269–271

    Google Scholar 

  3. Johanna M, Swati M, Sourabh G, et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 2016, 31: 1–16

    Article  Google Scholar 

  4. Qi Y, Wang H, Wei K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci, 2017, 18: 237–258

    Article  Google Scholar 

  5. Zhang P, Lan J, Wang Y, et al. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomaterials, 2015, 36: 26–32

    Article  Google Scholar 

  6. Tang B, Sun L, Kaur J, et al. In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics. Dyes Pigments, 2014, 103: 183–190

    Article  Google Scholar 

  7. Yu D, Kang G, Tian W, et al. Preparation of conductive silk fabric with antibacterial properties by electroless silver plating. Appl Surf Sci, 2015, 357: 1157–1162

    Article  Google Scholar 

  8. Lu Z, Meng M, Jiang Y, et al. UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids Surfs A-Physicochem Eng Aspects, 2014, 447: 1–7

    Article  Google Scholar 

  9. Meng M, He H, Xiao J, et al. Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application. J Colloid Interface Sci, 2016, 461: 369–375

    Article  Google Scholar 

  10. Xu S, Song J, Zhu C, et al. Graphene oxide-encapsulated Ag nano-particle-coated silk fibers with hierarchical coaxial cable structure fabricated by the molecule-directed self-assembly. Mater Lett, 2017, 188: 215–219

    Article  Google Scholar 

  11. Xu S, Chen S, Zhang F, et al. Preparation and controlled coating of hydroxyl-modified silver nanoparticles on silk fibers through inter-molecular interaction-induced self-assembly. Mater Des, 2016, 95: 107–118

    Article  Google Scholar 

  12. Xu S, Song J, Morikawa H, et al. Fabrication of hierarchical structured Fe3O4 and Ag nanoparticles dual-coated silk fibers through electrostatic self-assembly. Mater Lett, 2016, 164: 274–277

    Article  Google Scholar 

  13. Xie Q, Xu Z, Hu B, et al. Preparation of a novel silk microfiber covered by AgCl nanoparticles with antimicrobial activity. Microsc Res Tech, 2017, 80: 272–279

    Article  Google Scholar 

  14. Abbasi A R, Noori N, Azadbakht A, et al. Dense coating of surface mounted Cu2O nanoparticles upon silk fibers under ultrasound irradiation with antibacterial activity. J Iran Chem Soc, 2016, 13: 1273–1281

    Article  Google Scholar 

  15. Liao Y F, Zhang D S, Chen Y Y, et al. Fabrication of antibacterial and UV protective silk fabrics via in situ generating ZnO nanoparticles by hyperbranched polymer. Adv Mater Res, 2013, 796: 374–379

    Article  Google Scholar 

  16. Lu Z, Mao C, Meng M, et al. Fabrication of CeO2 nanoparticle-modified silk for UV protection and antibacterial applications. J Colloid Interface Sci, 2014, 435: 8–14

    Article  Google Scholar 

  17. Zhang W, Zhang D, Chen Y, et al. Hyperbranched polymer functional TiO2 nanoparticles: Synthesis and its application for the anti-UV finishing of silk fabric. Fibers Polym, 2015, 16: 503–509

    Article  Google Scholar 

  18. Xiao X, Liu X, Chen F, et al. Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition. ACS Appl Mater Interfaces, 2015, 7: 21326–21333

    Article  Google Scholar 

  19. Yang L, Jiang H, Shen Y, et al. Antireflection coating on silk fabric fabricated from reactive silica nanoparticles and its deepening color performance. J Sol-Gel Sci Tech, 2015, 74: 488–498

    Article  Google Scholar 

  20. Zhou J, Zhao Z, Hu R, et al. Magnetic silk fabrics through swelling-fixing method with Fe3O4 nanoparticles. Surf Coatings Tech, 2018, 342: 23–28

    Article  Google Scholar 

  21. Lin N, Meng Z, Toh G W, et al. Engineering of fluorescent emission of silk fibroin composite materials by material assembly. Small, 2015, 11: 1205–1214

    Article  Google Scholar 

  22. Song Y, Lin Z, Kong L, et al. Meso-functionalization of silk fibroin by upconversion fluorescence and near infrared in vivo biosensing. Adv Funct Mater, 2017, 27: 1700628

    Article  Google Scholar 

  23. Cao J, Wang C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Appl Surf Sci, 2017, 405: 380–388

    Article  Google Scholar 

  24. Narayanan S C, Karpagam K R, Bhattacharyya A. Nanocomposite coatings on cotton and silk fibers for enhanced electrical conductivity. Fibers Polym, 2015, 16: 1269–1275

    Article  Google Scholar 

  25. Zhang M, Wang C, Wang Q, et al. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces, 2016, 8: 20894–20899

    Article  Google Scholar 

  26. Ribeiro V P, Almeida L R, Martins A R, et al. Influence of different surface modification treatments on silk biotextiles for tissue engineering applications. J Biomed Mater Res, 2016, 104: 496–507

    Article  Google Scholar 

  27. Zhou Y, Tang R C. Modification of curcumin with a reactive UV absorber and its dyeing and functional properties for silk. Dyes Pigments, 2016, 134: 203–211

    Article  Google Scholar 

  28. Buga M R, Zaharia C, Bălan M, et al. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications. Mater Sci Eng-C, 2015, 51: 233–241

    Article  Google Scholar 

  29. Zhang H, Liu X, Yang M, et al. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications. Mater Sci Eng-C, 2015, 55: 8–13

    Article  Google Scholar 

  30. Lin N, Liu X Y, Diao Y Y, et al. Switching on fluorescent emission by molecular recognition and aggregation dissociation. Adv Funct Mater, 2012, 22: 361–368

    Article  Google Scholar 

  31. Lin N, Toh G W, Feng Y, et al. Two-photon fluorescent Bombyx mori silk by molecular recognition functionalization. J Mater Chem B, 2014, 2: 2136–2143

    Article  Google Scholar 

  32. Xu Y, Chen D, Du Z, et al. Structure and properties of silk fibroin grafted carboxylic cotton fabric via amide covalent modification. Carbohydrate Polymers, 2017, 161: 99–108

    Article  Google Scholar 

  33. Lv L, Han X, Zong L, et al. Biomimetic hybridization of kevlar into silk fibroin: Nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes. ACS Nano, 2017, 11: 8178–8184

    Article  Google Scholar 

  34. Wang P, Zhou Y, Cui L, et al. Enzymatic grafting of lactoferrin onto silk fibroins for antibacterial functionalization. Fibers Polym, 2014, 15: 2045–2050

    Article  Google Scholar 

  35. Hong J, Han X, Shi H, et al. Preparation of conductive silk fibroin yarns coated with polyaniline using an improved method based on in situ polymerization. Synth Met, 2018, 235: 89–96

    Article  Google Scholar 

  36. Zhou W, Huang H, Du S, et al. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nano-fibrous silk fibroin non-wovens. Appl Surf Sci, 2015, 345: 169–174

    Article  Google Scholar 

  37. Jin J, Hassanzadeh P, Perotto G, et al. A biomimetic composite from solution self-assembly of chitin nanofibers in a silk fibroin matrix. Adv Mater, 2013, 25: 4482–4487

    Article  Google Scholar 

  38. Elahi M F, Guan G, Wang L, et al. Influence of layer-by-layer poly-electrolyte deposition and EDC/NHS activated heparin immobilization onto silk fibroin fabric. Materials, 2014, 7: 2956–2977

    Article  Google Scholar 

  39. Nisal A, Trivedy K, Mohammad H, et al. Uptake of azo dyes into silk glands for production of colored silk cocoons using a green feeding approach. ACS Sustain Chem Eng, 2014, 2: 312–317

    Article  Google Scholar 

  40. Ji J Y, Kang C M, Li K, et al. Comparison of structures of luminescent silkworm silk prepared by feeding and dyeing. Mater Res Innovations, 2014, 18: S4–817–S4–820

    Article  Google Scholar 

  41. Wang J T, Li L L, Zhang M Y, et al. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mater Sci Eng-C, 2014, 34: 417–421

    Article  Google Scholar 

  42. Tian J H, Hu J S, Li F C, et al. Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biol Open, 2016, 5: 764–769

    Article  Google Scholar 

  43. Cai L, Shao H, Hu X, et al. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain Chem Eng, 2015, 3: 2551–2557

    Article  Google Scholar 

  44. Wang J T, Li L L, Feng L, et al. Directly obtaining pristine magnetic silk fibers from silkworm. Int J Biol Macromol, 2014, 63: 205–209

    Article  Google Scholar 

  45. Guo Z, Xie W, Gao Q, et al. In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. Int J Biol Macromol, 2018, 109: 21–26

    Article  Google Scholar 

  46. Wu G H, Song P, Zhang D Y, et al. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int J Biol Macromol, 2017, 104: 533–538

    Article  Google Scholar 

  47. Zhang C, Liu X, Xia L, et al. Characterization of raw silk fibers obtained by feeding silkworms with protein powder. J Nat Fibers, 2018, 15: 496–505

    Article  Google Scholar 

  48. Nguku E K, Muli E M, Raina S K. Larvae, cocoon and post-cocoon characteristics of Bombyx mori L. (Lepidoptera: bombycidae) fed on mulberry leaves fortified with Kenyan royal jelly. J Appl Sci Environ Manage, 2007, 11: 85–89

    Google Scholar 

  49. Nicodemo D, Oliveira J E, Sedano A A, et al. Impact of different silkworm dietary supplements on its silk performance. J Mater Sci, 2014, 49: 6302–6310

    Article  Google Scholar 

  50. Teramoto H, Kojima K. Incorporation of methionine analogues into Bombyx mori silk fibroin for click modifications. Macromol Biosci, 2015, 15: 719–727

    Article  Google Scholar 

  51. Teramoto H, Kojima K. Production of Bombyx mori silk fibroin incorporated with unnatural amino acids. Biomacromolecules, 2014, 15: 2682–2690

    Article  Google Scholar 

  52. Kuwana Y, Sezutsu H, Nakajima K, et al. High-toughness silk produced by a transgenic silkworm expressing spider (araneus ven-tricosus) dragline silk protein. PLoS ONE, 2014, 9: e105325

    Article  Google Scholar 

  53. Teulé F, Miao Y G, Sohn B H, et al. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci USA, 2012, 109: 923–928

    Article  Google Scholar 

  54. Kim K B, Kim M J, Choi K M. Development of the Micro-Silk Through the Breeding of Transgenic Silkworm. In: Advances in Affective and Pleasurable Design. Cham: Springer, 2016. 41–47

    Google Scholar 

  55. Li Z, Jiang Y, Cao G L, et al. Construction of transgenic silkworm spinning antibacterial silk with fluorescence. Mol Biol Rep, 2015, 42: 19–25

    Article  Google Scholar 

  56. Saotome T, Hayashi H, Tanaka R, et al. Introduction of VEGF or RGD sequences improves revascularization properties of Bombyx mori silk fibroin produced by transgenic silkworm. J Mater Chem B, 2015, 3: 7109–7116

    Article  Google Scholar 

  57. Nagano A, Tanioka Y, Sakurai N, et al. Regeneration of the femoral epicondyle on calcium-binding silk scaffolds developed using transgenic silk fibroin produced by transgenic silkworm. Acta Biomater, 2011, 7: 1192–1201

    Article  Google Scholar 

  58. Huang G, Yang D, Sun C, et al. A quicker degradation rate is yielded by a novel kind of transgenic silk fibroin consisting of shortened silk fibroin heavy chains fused with matrix metalloproteinase cleavage sites. J Mater Sci-Mater Med, 2014, 25: 1833–1842

    Article  Google Scholar 

  59. Liu Q, Wang X, Tan X, et al. A strategy for improving the mechanical properties of silk fiber by directly injection of ferric ions into silk-worm. Mater Des, 2018, 146: 134–141

    Article  Google Scholar 

  60. Wang X, Li Y, Liu Q, et al. In vivo effects of metal ions on conformation and mechanical performance of silkworm silks. Biochim Biophysica Acta (BBA)-General Subjects, 2017, 1861: 567–576

    Article  Google Scholar 

  61. Wang X, Zhao P, Li Y, et al. Modifying the mechanical properties of silk fiber by genetically disrupting the ionic environment for silk formation. Biomacromolecules, 2015, 16: 3119–3125

    Article  Google Scholar 

  62. Furusawa T, Nojima K, Ichida M, et al. Introduction to the proposed space experiments aboard the ISS using the silkworm, Bombyx mori. Biol Sci Space, 2009, 23: 61–69

    Article  Google Scholar 

  63. Li W, Wang J, Chi H, et al. Preparation and antibacterial activity of polyvinyl alcohol/regenerated silk fibroin composite fibers containing Ag nanoparticles. J Appl Polym Sci, 2012, 123: 20–25

    Article  Google Scholar 

  64. Chung S, Ercan B, Roy A K, et al. Addition of selenium nanoparticles to electrospun silk scaffold improves the mammalian cell activity while reducing bacterial growth. Front Physiol, 2016, 7: 297

    Google Scholar 

  65. Rajabi M, Firouzi M, Hassannejad Z, et al. Fabrication and characterization of electrospun laminin-functionalized silk fibroin/poly (ethylene oxide) nanofibrous scaffolds for peripheral nerve regeneration. J Biomed Mater Res, 2018, 106: 1595–1604

    Article  Google Scholar 

  66. Wei G, Li C, Fu Q, et al. Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Int Urol Nephrol, 2015, 47: 95–99

    Article  Google Scholar 

  67. Ren Z, Ma S, Jin L, et al. Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication, 2017, 9: 025036

    Article  Google Scholar 

  68. Kim H, Che L, Ha Y, et al. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nano-particles. Mater Sci Eng-C, 2014, 40: 324–335

    Article  Google Scholar 

  69. Peng L, Jiang S, Seuß M, et al. Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly(l-lactide) by electro-spinning. Macromol Mater Eng, 2016, 301: 48–55

    Article  Google Scholar 

  70. Ayutsede J, Gandhi M, Sukigara S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Bioma-cromolecules, 2006, 7: 208–214

    Article  Google Scholar 

  71. Zhang F, Lu Q, Yue X, et al. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent. Acta Biomater, 2015, 12: 139–145

    Article  Google Scholar 

  72. Zhang C, Zhang Y, Shao H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces, 2016, 8: 3349–3358

    Article  Google Scholar 

  73. Fang G, Zheng Z, Yao J, et al. Tough protein-carbon nanotube hybrid fibers comparable to natural spider silks. J Mater Chem B, 2015, 3: 3940–3947

    Article  Google Scholar 

  74. Zhang Q, Wang N, Hu R, et al. Wet spinning of Bletilla striata polysaccharide/silk fibroin hybrid fibers. Mater Lett, 2015, 161: 576–579

    Article  Google Scholar 

  75. Yan Y, Cheng B, Chen K, et al. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair. Adv Healthcare Mater, 2019, 8: 1801043

    Article  Google Scholar 

  76. Lee J M, Sultan M T, Kim S H, et al. Artificial auricular cartilage using silk fibroin and polyvinyl alcohol hydrogel. Int J Mol Sci, 2017, 18: 1707

    Article  Google Scholar 

  77. Rajkhowa R, Hu X, Tsuzuki T, et al. Structure and biodegradation mechanism of milled Bombyx mori silk particles. Biomacromolecules, 2012, 13: 2503–2512

    Article  Google Scholar 

  78. Seib F P, Jones G T, Rnjak-Kovacina J, et al. PH-dependent anticancer drug release from silk nanoparticles. Adv Healthcare Mater, 2013, 2: 1606–1611

    Article  Google Scholar 

  79. Montalbán M G, Coburn J M, Lozano-Pérez A A, et al. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nano-materials, 2018, 8: 126–144

    Google Scholar 

  80. Wang Y, Song Y, Wang Y, et al. Graphene/silk fibroin based carbon nanocomposites for high performance supercapacitors. J Mater Chem A, 2015, 3: 773–781

    Article  Google Scholar 

  81. Liu C, Li J, Che L, et al. Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process. Nano Energy, 2017, 41: 359–366

    Article  Google Scholar 

  82. Gao A, Xie K, Song X, et al. Removal of the heavy metal ions from aqueous solution using modified natural biomaterial membrane based on silk fibroin. Ecol Eng, 2017, 99: 343–348

    Article  Google Scholar 

  83. Magrì D, Caputo G, Perotto G, et al. Titanate fibroin nanocomposites: A novel approach for the removal of heavy-metal ions from water. ACS Appl Mater Interfaces, 2018, 10: 651–659

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, S. & Huang, J. Progress in modification of silk fibroin fiber. Sci. China Technol. Sci. 62, 919–930 (2019). https://doi.org/10.1007/s11431-018-9508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9508-3

Navigation