Skip to main content
Log in

Stability and bifurcation control of a neuron system under a novel fractional-order PD controller

  • Article
  • Special Topic: Nonlinear Dynamics and Control
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of bifurcation control for a delayed neuron system. By introducing a new fractional-order Proportional-Derivative (PD) feedback controller, this paper aims to control the stability and Hopf bifurcation through adjusting the control gain parameters. The order chosen in PD controller is different with that of the integer-order neuron system. Sufficient conditions for guaranteeing the stability and generating Hopf bifurcation are constructed for the controlled neuron system. Finally, numerical simulation results are illustrated to verify our theoretical derivations and the relationships between the onset of the Hopf bifurcation and the gain parameters are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA, 1984, 81: 3088–3092

    MATH  Google Scholar 

  2. Song Z G, Xu J. Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with multiple delays. Sci China Tech Sci, 2014, 57: 893–904

    Google Scholar 

  3. Huang C D, Cao J D. Hopf bifurcation in an n-dimensional Goodwin model via multiple delays feedback. Nonlinear Dyn, 2015, 79: 2541–2552

    MathSciNet  MATH  Google Scholar 

  4. Ge J H, Xu J. Hopf bifurcation and chaos in an inertial neuron system with coupled delay. Sci China Tech Sci, 2013, 56: 2299–2309

    Google Scholar 

  5. Guo Y. Exponential stability analysis of travelling waves solutions for nonlinear delayed cellular neural networks. Dynamical Syst, 2017, 32: 490–503

    MathSciNet  MATH  Google Scholar 

  6. Guo Y. Global stability analysis for a class of Cohen-Grossberg neural network models. Bull Korean Math Soc, 2012, 49: 1193–1198

    MathSciNet  MATH  Google Scholar 

  7. Huang C, Cao J, Xiao M, et al. Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons. Commun Nonlinear Sci Numer Simul, 2018, 57: 1–13

    MathSciNet  Google Scholar 

  8. Ye W J, Liu S Q, Liu X L. Synchronization of two electrically coupled inspiratory pacemaker neurons. Sci China Tech Sci, 2014, 57: 929–935

    Google Scholar 

  9. Li Y, Wu X, Lu J, et al. Synchronizability of duplex networks. IEEE Trans Circuits Syst II, 2016, 63: 206–210

    Google Scholar 

  10. Mei G F, Wu X Q, Ning D, et al. Finite-time stabilization of complex dynamical networks via optimal control. Complexity, 2016, 21: 417–425

    MathSciNet  Google Scholar 

  11. Song P F, Xiao Y N. Global hopf bifurcation of a delayed equation describing the lag effect of media impact on the spread of infectious disease. J Math Biol, 2018, 76: 1249–1267

    MathSciNet  MATH  Google Scholar 

  12. Wang D, Chen Y S, Hao Z F, et al. Bifurcation analysis for vibrations of a turbine blade excited by air flows. Sci China Tech Sci, 2016, 59: 1217–1231

    Google Scholar 

  13. Han M A, Sheng L J, Zhang X. Bifurcation theory for finitely smooth planar autonomous differential systems. J Differ Equ, 2018, 264: 3596–3618

    MathSciNet  MATH  Google Scholar 

  14. Ge J H, Xu J. Fold-Hopf bifurcation in a simplified four-neuron BAM (bidirectional associative memory) neural network with two delays. Sci China Tech Sci, 2010, 53: 633–644

    MATH  Google Scholar 

  15. Liu L S, Sun F L, Zhang X G. Bifurcation analysis for a singular differential system with two parameters via to topological degree theory. Nonlinear Anal, 2017, 2017: 31–50

    MathSciNet  MATH  Google Scholar 

  16. Ott E, Grebogi C, Yorke J A. Controlling chaos. Phys Rev Lett, 1990, 64: 1196–1199

    MathSciNet  MATH  Google Scholar 

  17. Adhikari M H, Coutsias E A, McIver J K. Periodic solutions of a singularly perturbed delay differential equation. Phys D-Nonlinear Phenomena, 2008, 237: 3307–3321

    MathSciNet  MATH  Google Scholar 

  18. Chen G, Moiola J L, Wang H O. Bifurcation control: Theories, methods, and applications. Int J Bifurcation Chaos, 2000, 10: 511–548

    MathSciNet  MATH  Google Scholar 

  19. Wang H X, Wang Q Y, Zheng Y H. Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci China Tech Sci, 2014, 57: 872–878

    MathSciNet  Google Scholar 

  20. Yu P, Chen G. Hopf bifurcation control using nonlinear feedback with polynomial functions. Int J Bifurcation Chaos, 2004, 14: 1683–1704

    MathSciNet  MATH  Google Scholar 

  21. Wang H O, Chen D S, Bushnell L G. Dynamic feedback control of bifurcations. In: Proceedings of the IEEE conference on decision and control. Sydney, 2000. 1619–1624

  22. Ding D W, Zhang X Y, Cao J D, et al. Bifurcation control of complex networks model via PD controller. Neurocomputing, 2016, 175: 1–9

    Google Scholar 

  23. Huang C L, Sun W, Zheng Z G, et al. Hopf bifurcation control of the M-L neuron model with type I. Nonlinear Dyn, 2017, 87: 755–766

    Google Scholar 

  24. Tong D B, Zhou W N, Zhou X, et al. Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control. Commun Nonlinear Sci Numer Simul, 2015, 29: 359–371

    MathSciNet  Google Scholar 

  25. Yabuno H, Hasegawa M, Ohkuma M. Bifurcation control for a para-metrically excited cantilever beam by linear feedback. Proc Institution Mech Engineers Part C-J Mech Eng Sci, 2012, 226: 1987–1999

    Google Scholar 

  26. Nguyen L H, Hong K S. Hopf bifurcation control via a dynamic statefeedback control. Phys Lett A, 2012, 376: 442–446

    MathSciNet  MATH  Google Scholar 

  27. Yu P, Lu J H. Bifurcation control for a class of Lorenz-like systems. Int J Bifurcation Chaos, 2011, 21: 2647–2664

    MATH  Google Scholar 

  28. Xiao M, Zheng W X, Cao J D. Bifurcation and control in a neural network with small and large delays. Neural Networks, 2013, 44: 132–142

    MATH  Google Scholar 

  29. Huang C D, Cao J D, Xiao M. Hybrid control on bifurcation for a delayed fractional gene regulatory network. Chaos Solitons Fractals, 2016, 87: 19–29

    MathSciNet  MATH  Google Scholar 

  30. Milton J, Jung P. Epilepsy as a Dynamic Disease. New York: Springer-Verlag, 2003

    MATH  Google Scholar 

  31. Elwakil A. Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits Syst Mag, 2010, 10: 40–50

    Google Scholar 

  32. Minorsky N. Directional stability of automatically steered bodies. J Am Soc Naval Engineers, 1922, 34: 280–309

    Google Scholar 

  33. Kelly R. Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. IEEE Trans Automat Contr, 1998, 43: 934–938

    MathSciNet  MATH  Google Scholar 

  34. Dupont P E. Avoiding stick-slip through PD control. IEEE Trans Automat Contr, 1994, 39: 1094–1097

    MathSciNet  MATH  Google Scholar 

  35. Yu W. Nonlinear PD Regulation for ball and beam system. Int J Electrical Eng Education, 2009, 46: 59–73

    Google Scholar 

  36. Nozaki H, Makita M, Masukawa T. Proper PD steering assistance constant based on the driving situation. Int J Automot Technol, 2011, 12: 513–519

    Google Scholar 

  37. Li, J H. Fuzzy PD type control of magnetic levitation system. In: Proceedings of the IEEE Conference on Industrial Electronics and Applications. Taichung, 2010. 310–315

  38. Tang Y H, Xiao M, Jiang G, et al. Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system. Nonlinear Dyn, 2017, 90: 2185–2198

    MathSciNet  MATH  Google Scholar 

  39. Xiao M, Zheng W X, Lin J, et al. Fractional-order PD control at Hopf bifurcations in delayed fractional-order small-world networks. J Franklin Institute, 2017, 354: 7643–7667

    MathSciNet  MATH  Google Scholar 

  40. Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999

    MATH  Google Scholar 

  41. Samko S G, Kilbas A A, Marichev O I. Fractional Intergals and Derivatives: Theory and Application. Amsterdam: Gordon and Breach Science Publishers, 1993

    MATH  Google Scholar 

  42. Wu J, Zhang X G, Liu L S, et al. Iterative algorithm and estimation of solution for a fractional order differential equation. Bound Value Probl, 2016, 2016: 116

    MathSciNet  MATH  Google Scholar 

  43. Li M M, Wang J R. Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl Math Computation, 2018, 324: 254–265

    MathSciNet  MATH  Google Scholar 

  44. Zhang X G, Liu L S, Wu Y H. The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl Math Lett, 2014, 37: 26–33

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xiao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61573194, 51775284), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20181389, BK20171441), the Key Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province (Grant No. 2018SJZDI142), and the Australian Research Council (Grant No. DP120104986).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Xiao, M., Rong, L. et al. Stability and bifurcation control of a neuron system under a novel fractional-order PD controller. Sci. China Technol. Sci. 62, 2120–2129 (2019). https://doi.org/10.1007/s11431-018-9496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9496-x

Keywords

Navigation