Skip to main content
Log in

Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogue R. Artificial muscles and soft gripping: A review of technologies and applications. Industrial Robot, 2012, 39: 535–540

    Article  Google Scholar 

  2. Li M, Kang R, Branson D T, et al. Model-free control for continuum robots based on an adaptive Kalman filter. IEEE/ASME Trans Mechatron, 2018, 23: 286–297

    Article  Google Scholar 

  3. Godage I S, Medrano-Cerda G A, Branson D T, et al. Dynamics for variable length multisection continuum arms. Int J Robot Res, 2016, 35: 695–722

    Article  Google Scholar 

  4. Shin D, Yeh X, Khatib O. A new hybrid actuation scheme with artificial pneumatic muscles and a magnetic particle brake for safe human-robot collaboration. Int J Robot Res, 2014, 33: 507–518

    Article  Google Scholar 

  5. Shin D, Sardellitti I, Park Y L, et al. Design and control of a bioinspired human-friendly robot. Int J Robot Res, 2010, 29: 571–584

    Article  Google Scholar 

  6. Zhu L, Shi X, Chen Z, et al. Adaptive servomechanism of pneumatic muscle actuators with uncertainties. IEEE Trans Ind Electron, 2017, 64: 3329–3337

    Article  Google Scholar 

  7. Huang J, Cao Y, Xiong C, et al. An echo state Gaussian process-based nonlinear model predictive control for pneumatic muscle actuators. IEEE Trans Automat Sci Eng, 2018, 1–14

    Google Scholar 

  8. Xie S L, Liu H T, Mei J P, et al. Modeling and compensation of asymmetric hysteresis for pneumatic artificial muscles with a modified generalized Prandtl-Ishlinskii model. Mechatronics, 2018, 52: 49–57

    Article  Google Scholar 

  9. Xie S, Mei J, Liu H, et al. Hysteresis modeling and trajectory tracking control of the pneumatic muscle actuator using modified Prandtl-Ishlinskii model. Mech Mach Theoy, 2018, 120: 213–224

    Article  Google Scholar 

  10. Lin C J, Lin C R, Yu S K, et al. Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model. Mechatronics, 2015, 28: 35–45

    Article  Google Scholar 

  11. Gu G Y, Li C X, Zhu L M, et al. Modeling and identification of piezoelectric-actuated stages cascading hysteresis nonlinearity with linear dynamics. IEEE/ASME Trans Mechatron, 2016, 21: 1792–1797

    Article  Google Scholar 

  12. Gu G Y, Zhu L M, Su C Y. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model. IEEE Trans Ind Electron, 2014, 61: 1583–1595

    Article  Google Scholar 

  13. Ko Y R, Hwang Y, Chae M, et al. Direct identification of generalized Prandtl-Ishlinskii model inversion for asymmetric hysteresis compensation. ISA Trans, 2017, 70: 209–218

    Article  Google Scholar 

  14. Janaideh M A, Rakheja S, Su C Y. A generalized Prandtl-Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators. Smart Mater Struct, 2009, 18: 045001

    Article  Google Scholar 

  15. Wang Y F, Xu R, Zhou M L. Prandtl-Ishlinskii modeling for giant magnetostrictive actuator based on internal time-delay recurrent neural network. IEEE Trans Magn, 2018, 54: 1–4

    Article  Google Scholar 

  16. Ismail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey. Arch Comput Methods Eng, 2009, 16: 161–188

    Article  MATH  Google Scholar 

  17. Zhu W, Wang D. Non-symmetrical Bouc-Wen model for piezoelectric ceramic actuators. Sens Actuat A-Phys, 2012, 181: 51–60

    Article  Google Scholar 

  18. Martins S A M, Aguirre L A. Sufficient conditions for rate-independent hysteresis in autoregressive identified models. Mech Syst Signal Proc, 2016, 75: 607–617

    Article  Google Scholar 

  19. Chen P, Bai X X, Qian L J, et al. An approach for hysteresis modeling based on shape function and memory mechanism. IEEE/ASME Trans Mechatron, 2018, 23: 1270–1278

    Article  Google Scholar 

  20. Tan X B, Baras J S. Adaptive identification and control of hysteresis in smart materials. IEEE Trans Automat Contr, 2005, 50: 827–839

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen P B, Choi S B, Song B K. Development of a novel diagonalweighted Preisach model for rate-independent hysteresis. Proc Inst Mech Eng C-J Mech Eng Sci, 2017, 231: 961–976

    Article  Google Scholar 

  22. Ravichandar H C, Salehi I, Baillie B P, et al. Learning stable nonlinear dynamical systems with external inputs using Gaussian mixture models. In: Proceedings of the 2018 Annual American Control Conference (ACC 2018). Milwaukee: WI, 2018. 4825–4830

    Chapter  Google Scholar 

  23. Salehian S S M, Khoramshahi M, Billard A. A dynamical system approach for softly catching a flying object: Theory and experiment. IEEE Trans Robot, 2016, 32: 462–471

    Article  Google Scholar 

  24. 24 Khansari-Zadeh S M, Billard A. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Trans Robot, 2011, 27: 943–957

    Article  Google Scholar 

  25. Gribovskaya E, Khansari- Zadeh S M, Billard A. Learning non-linear multivariate dynamics of motion in robotic manipulators. Int J Robotics Res, 2011, 30: 80–117

    Article  Google Scholar 

  26. Hu H Y, Wang Z H. On hysteresis and retardation (in Chinese). Chin J Theor Appl Mech, 2010, 42: 740–746

    Google Scholar 

  27. Covões T F, Hruschka E R. Unsupervised learning of Gaussian mixture models: Evolutionary create and eliminate for expectation maximization algorithm. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC 2013). Cancun, 2013. 3206–3213

    Chapter  Google Scholar 

  28. Farrokh M. Hysteresis simulation using least-squares support vector machine. J Eng Mech, 2018, 144: 04018084

    Article  Google Scholar 

  29. Li Y F, Chen M N, Lu X D, et al. Research on optimized GA-SVM vehicle speed prediction model based on driver-vehicle-road-traffic system. Sci China Tech Sci, 2018, 61: 782–790

    Article  Google Scholar 

  30. Ang K H, Chong G, Yun Li G. PID control system analysis, design, and technology. IEEE Trans Contr Syst Technol, 2005, 13: 559–576

    Article  Google Scholar 

  31. Yao S, Li H, Zeng L, et al. Vision-based adaptive control of a 3-RRR parallel positioning system. Sci China Tech Sci, 2018, 61: 1253–1264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Xiao, M. & Ding, Y. Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models. Sci. China Technol. Sci. 62, 1094–1102 (2019). https://doi.org/10.1007/s11431-018-9488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9488-1

Keywords

Navigation