Skip to main content
Log in

Polymer complexation for functional fibers

  • Review
  • Special Topic: Smart and Functional Fiber Materials
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Polymer complex is a polymer association of different polymers with good miscibility resulting from the relatively strong intermolecular interactions or stereo match effect between polymer chains. Polymer complexes have been utilized in various fields, such as food, biomedical, cosmetic, and pharmacy. Fiber is one of the most important material forms, and shaping polymer complex into fiber will further extend its applications. This review briefly introduces the fundamentals of polymer complex, and then demonstrates the main approaches to produce polymer complex fibers (PCFs). Followed by, the modification of fibers with polymer complexes is presented. Finally, the applications of PCFs and the polymer complex modified fibers are provided, and the prospect of polymer complexation for fibers is discussed properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen X Y. Chemical Fiber Manual (in Chinese). Beijing: China Textile Press, 2008. 1–4

    Google Scholar 

  2. Yoshiharu K, Akira T, Kaname K. High-Performance and Specialty Fibers. Tokyo: Springer, 2016

    Google Scholar 

  3. Heckert W W. Synthetic fibers. J Chem Educ, 1953, 30: 166

    Google Scholar 

  4. Russell P S J. Photonic-crystal fibers. J Lightwave Tech, 2006, 24: 4729–4749

    Google Scholar 

  5. Park J H, Rutledge G C. 50th anniversary perspective: Advanced polymer fibers: High performance and ultrafine. Macromolecules, 2017, 50: 5627–5642

    Google Scholar 

  6. Chang H, Luo J, Gulgunje P V, et al. Structural and functional fibers. Annu Rev Mater Res, 2017, 47: 331–359

    Google Scholar 

  7. Stoppa M, Chiolerio A. Wearable electronics and smart textiles: A critical review. Sensors, 2014, 14: 11957–11992

    Google Scholar 

  8. Weng W, Chen P, He S, et al. Smart electronic textiles. Angew Chem Int Ed, 2016, 55: 6140–6169

    Google Scholar 

  9. Tao X. Handbook of Smart Textiles. Singapore: Springer, 2015

    Google Scholar 

  10. Consales M, Ricciardi A, Crescitelli A, et al. Lab-on-fiber technology: Toward multifunctional optical nanoprobes. ACS Nano, 2012, 6: 3163–3170

    Google Scholar 

  11. Cusano A, Consales M, Crescitelli A, et al. Lab-on-Fiber Technology. Berlin: Springer, 2014

    Google Scholar 

  12. Jeffries R. Bicomponent Fibers. County Durham: Merrow Publishing Co. Ltd., 1971

    Google Scholar 

  13. Marcinčin A. Modification of fiber-forming polymers by additives. Prog Polymer Sci, 2002, 27: 853–913

    Google Scholar 

  14. Rizao C. Manufacture and application of composite fiber. Chin Syn Fiber Ind, 1986, 3: 27–33

    Google Scholar 

  15. Jiang M, Qiu X, Qin W, et al. Intermacromolecular complexation due to specific interactions. 2. Nonradiative energy transfer fluorospec-troscopy and nuclear magnetic resonance monitoring miscibility-complexation transition. Macromolecules, 1995, 28: 730–735

    Google Scholar 

  16. Sing C E. Development of the modern theory of polymeric complex coacervation. Adv Colloid Interface Sci, 2017, 239: 2–16

    Google Scholar 

  17. Wang Q, Schlenoff J B. The polyelectrolyte complex/coacervate continuum. Macromolecules, 2014, 47: 3108–3116

    Google Scholar 

  18. Comert F, Malanowski A J, Azarikia F, et al. Coacervation and precipitation in polysaccharide-protein systems. Soft Matter, 2016, 12: 4154–4161

    Google Scholar 

  19. Jiang M, Li M, Xiang M, et al. Interpolymer Complexation and Miscibility Enhancement by Hydrogen Bonding. In: Advances in Polymer Science. Berlin: Springer, 1999. 121–196

    Google Scholar 

  20. Michaels A S. Polyelectrolyte complexes. Ind Eng Chem, 1965, 57: 32–40

    Google Scholar 

  21. Lindhoud S, Stuart M A C. Polyelectrolyte Complexes in the Dispersed and Solid State I: Principles and Theory. Berlin: Springer, 2014

    Google Scholar 

  22. Zhao Q, Lee D W, Ahn B K, et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat Mater, 2016, 15: 407–412

    Google Scholar 

  23. Luo F, Sun T L, Nakajima T, et al. Oppositely charged polyelec-trolytes form tough, self-healing, and rebuildable hydrogels. Adv Mater, 2015, 27: 2722–2727

    Google Scholar 

  24. Wang Y, Liu X, Li S, et al. Transparent, healable elastomers with high mechanical strength and elasticity derived from hydrogen-bonded polymer complexes. ACS Appl Mater Interfaces, 2017, 9: 29120–29129

    Google Scholar 

  25. Su C, Ma S M, Liu G X, et al. Dewetting behavior of hydrogen bonded polymer complex film under hydrothermal condition. Chin J Polym Sci, 2018, 36: 1036–1042

    Google Scholar 

  26. Watanabe W H, Ryan C F, Fleischer Jr. P C, et al. Measurement of the tacticity of syndiotactic poly-(methyl methacrylate) by the gel melting point. J Phys Chem, 1961, 65: 896

    Google Scholar 

  27. Tsuji H. Poly(lactic acid) stereocomplexes: A decade of progress. Adv Drug Deliver Rev, 2016, 107: 97–135

    Google Scholar 

  28. Lee S, Kimoto M, Tanaka M, et al. Crystal modulus of poly(lactic acid)s, and their stereocomplex. Polymer, 2018, 138: 124–131

    Google Scholar 

  29. Cohen J, Lach J L. Interaction of pharmaceuticals with schardinger dextrins. I. Interaction with hydroxybenzoic acids and p-hydro-xybenzoates. J Pharmaceutical Sci, 1963, 52: 132–136

    Google Scholar 

  30. Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supra-molecular polymers. Chem Soc Rev, 2009, 38: 875–882

    Google Scholar 

  31. Takashima Y, Otani K, Kobayashi Y, et al. Mechanical properties of supramolecular polymeric materials formed by cyclodextrins as host molecules and cationic alkyl guest molecules on the polymer side chain. Macromolecules, 2018, 51: 6318–6326

    Google Scholar 

  32. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem, 2006, 99: 191–203

    Google Scholar 

  33. Wan A C A, Cutiongco M F A, Tai B C U, et al. Fibers by interfacial polyelectrolyte complexation-processes, materials and applications. Mater Today, 2016, 19: 437–450

    Google Scholar 

  34. Stockton W B, Rubner M F. Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules, 1997, 30: 2717–2725

    Google Scholar 

  35. SchlenoffJ B, Dubas S T. Mechanism of polyelectrolyte multilayer growth: Charge overcompensation and distribution. Macromolecules, 2001, 34: 592–598

    Google Scholar 

  36. Kharlampieva E, Kozlovskaya V, Sukhishvili S A. Layer-by-layer hydrogen-bonded polymer films: From fundamentals to applications. Adv Mater, 2009, 21: 3053–3065

    Google Scholar 

  37. Delcea M, Möhwald H, Skirtach A G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliver Rev, 2011, 63: 730–747

    Google Scholar 

  38. Such G K, Johnston A P R, Caruso F. Engineered hydrogen-bonded polymer multilayers: From assembly to biomedical applications. Chem Soc Rev, 2011, 40: 19–29

    Google Scholar 

  39. Tsuji H, Ikada Y, Hyon S H, et al. Stereocomplex formation between enantiomeric poly(lactic acid). VIII. Complex fibers spun from mixed solution of poly(D-lactic acid) and poly(L-lactic acid). J Appl Polym Sci, 1994, 51: 337–344

    Google Scholar 

  40. Furuhashi Y, Kimura Y, Yamane H. Higher order structural analysis of stereocomplex-type poly(lactic acid) melt-spun fibers. J Polym Sci B Polym Phys, 2007, 45: 218–228

    Google Scholar 

  41. Pan G, Xu H, Ma B, et al. Polylactide fibers with enhanced hydro-lytic and thermal stability via complete stereo-complexation of poly (L-lactide) with high molecular weight of 600000 and lower-molecular-weight poly(D-lactide). J Mater Sci, 2018, 53: 5490–5500

    Google Scholar 

  42. Grenier D, Prud’Homme R E. Complex formation between enantiomeric polyesters. J Polym Sci Polym Phys Ed, 1984, 22: 577–587

    Google Scholar 

  43. Okumura Y, Ito K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv Mater, 2001, 13: 485–487

    Google Scholar 

  44. Amaike M, Senoo Y, Yamamoto H. Sphere, honeycomb, regularly spaced droplet and fiber structures of polyion complexes of chitosan and gellan. Macromol Rapid Commun, 1998, 19: 287–289

    Google Scholar 

  45. Ohkawa K, Takahashi Y, Yamada M, et al. Polyion complex fiber and capsule formed by self-assembly of chitosan and poly(α, L-glu-tamic acid) at solution interfaces. Macromol Mater Eng, 2001, 286: 168–175

    Google Scholar 

  46. Ohkawa K, Takahashi Y, Yamamoto H. Self-assembling capsule and fiber formations of polyion complexes of chitosan and poly(α, L-glutamic acid). Macromol Rapid Commun, 2000, 21: 223–225

    Google Scholar 

  47. Yamamoto H, Horita C, Senoo Y, et al. Polyion complex fiber and capsule formed by self-assembly of poly-L-lysine and gellan at solution interfaces. J Appl Polym Sci, 2001, 79: 437–446

    Google Scholar 

  48. Nishida A, Yamamoto H, Nishi N. Preparation of polyion complex fibers and capsules of DNA and chitosan at an aqueous interface. Bull Chem Soc Jpn, 2004, 77: 1783–1787

    Google Scholar 

  49. Yamamoto H, Senoo Y. Polyion complex fiber and capsule formed by self-assembly of chitosan and gellan at solution interfaces. Macromol Chem Phys, 2000, 201: 84–92

    Google Scholar 

  50. Ohkawa K, Shoumura K, Shirakabe Y, et al. Photoresponsive peptide and polypeptide systems 15: Synthesis of photo-crosslinkable poly (amino acid)s by watery process and its application as a reinforcement for polyion complex fibers. J Mater Sci, 2003, 38: 3191–3197

    Google Scholar 

  51. Wan A C A, Leong M F, Toh J K C, et al. Multicomponent fibers by multi-interfacial polyelectrolyte complexation. Adv Healthcare Mater, 2012, 1: 101–105

    Google Scholar 

  52. Toivonen M S, Kurki-Suonio S, Wagermaier W, et al. Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromolecules, 2017, 18: 1293–1301

    Google Scholar 

  53. Peng C A, Russo J, Lyda T A, et al. Polyelectrolyte fiber assembly of plant-derived spider silk-like proteins. Biomacromolecules, 2017, 18: 740–746

    Google Scholar 

  54. Wan A C A, Liao I C, Yim E K F, et al. Mechanism of fiber formation by interfacial polyelectrolyte complexation. Macromolecules, 2004, 37: 7019–7025

    Google Scholar 

  55. Sæther H V, Holme H K, Maurstad G, et al. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym, 2008, 74: 813–821

    Google Scholar 

  56. Wan A C A, Yim E K F, Liao I C, et al. Encapsulation of biologics in self-assembled fibers as biostructural units for tissue engineering. J Biomed Mater Res, 2004, 71A: 586–595

    Google Scholar 

  57. Grande R, Trovatti E, Carvalho A J F, et al. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J Mater Chem A, 2017, 5: 13098–13103

    Google Scholar 

  58. Zhang K, Liimatainen H. Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small, 2018, 14: 1801937

    Google Scholar 

  59. Zhang F, Halverson P A, Lunt B, et al. Wet spinning of pre-doped polyaniline into an aqueous solution of a polyelectrolyte. Synth Met, 2006, 156: 932–937

    Google Scholar 

  60. Lynam C, Moulton S, Wallace G. Carbon-nanotube biofibers. Adv Mater, 2007, 19: 1244–1248

    Google Scholar 

  61. Granero A J, Razal J M, Wallace G G, et al. Spinning carbon nanotube-gel fibers using polyelectrolyte complexation. Adv Funct Mater, 2008, 18: 3759–3764

    Google Scholar 

  62. Granero A J, Razal J M, Wallace G G, et al. Mechanical reinforcement of continuous flow spun polyelectrolyte complex fibers. Macromol Biosci, 2009, 9: 354–360

    Google Scholar 

  63. Granero A J, Razal J M, Wallace G G, et al. Conducting gel-fibres based on carrageenan, chitosan and carbon nanotubes. J Mater Chem, 2010, 20: 7953–7956

    Google Scholar 

  64. Ma S, Qi X, Cao Y, et al. Hydrogen bond detachment in polymer complexes. Polymer, 2013, 54: 5382–5390

    Google Scholar 

  65. Boas M, Gradys A, Vasilyev G, et al. Electrospinning polyelectrolyte complexes: pH-responsive fibers. Soft Matter, 2015, 11: 1739–1747

    Google Scholar 

  66. Li J, Wang Z, Wen L, et al. Highly elastic fibers made from hydrogen-bonded polymer complex. ACS Macro Lett, 2016, 5: 814–818

    Google Scholar 

  67. Fu J, Schlenoff J B. Driving forces for oppositely charged polyion association in aqueous solutions: Enthalpic, entropic, but not electrostatic. J Am Chem Soc, 2016, 138: 980–990

    Google Scholar 

  68. Schaaf P, Schlenoff J B. Saloplastics: Processing compact polyelectrolyte complexes. Adv Mater, 2015, 27: 2420–2432

    Google Scholar 

  69. Wang Q, Schlenoff J B. Tough strained fibers of a polyelectrolyte complex: Pretensioned polymers. RSC Adv, 2014, 4: 46675–46679

    Google Scholar 

  70. Nie J, Wang Z, Li J, et al. Interface hydrogen-bonded core-shell nanofibers by coaxial electrospinning. Chin J Polym Sci, 2017, 35: 1001–1008

    Google Scholar 

  71. Ma S, Yuan Q, Zhang X, et al. Solvent effect on hydrogen-bonded thin film of poly(vinylpyrrolidone) and poly(acrylic acid) prepared by layer-by-layer assembly. Colloids Surfs A-Physicochem Eng Aspects, 2015, 471: 11–18

    Google Scholar 

  72. Xiao S, Shen M, Guo R, et al. Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J Mater Chem, 2010, 20: 5700–5708

    Google Scholar 

  73. Xiao S, Shen M, Guo R, et al. Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: Synthesis, characterization, and potential environmental applications. J Phys Chem C, 2009, 113: 18062–18068

    Google Scholar 

  74. Amariei G, Boltes K, Letön P, et al. Poly(amidoamine) dendrimers grafted on electrospun poly(acrylic acid)/poly(vinyl alcohol) membranes for host-guest encapsulation of antioxidant thymol. J Mater Chem B, 2017, 5: 6776–6785

    Google Scholar 

  75. Penchev H, Paneva D, Manolova N, et al. Novel electrospun nano-fibers composed of polyelectrolyte complexes. Macromol Rapid Commun, 2008, 29: 677–681

    Google Scholar 

  76. Zhang R Y, Zaslavski E, Vasilyev G, et al. Tunable pH-responsive chitosan-poly(acrylic acid) electrospun fibers. Biomacromolecules, 2018, 19: 588–595

    Google Scholar 

  77. Meng X, Perry S L, Schiffman J D. Complex coacervation: Chemically stable fibers electrospun from aqueous polyelectrolyte solutions. ACS Macro Lett, 2017, 6: 505–511

    Google Scholar 

  78. Overbeek J T G, Voorn M J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J Cell Comp Physiol, 1957, 49: 7–26

    Google Scholar 

  79. Tsuji H, Nakano M, Hashimoto M, et al. Electrospinning of poly (lactic acid) stereocomplex nanofibers. Biomacromolecules, 2006, 7: 3316–3320

    Google Scholar 

  80. Uyar T, Besenbacher F. Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers. Eur Polymer J, 2009, 45: 1032–1037

    Google Scholar 

  81. Narayanan G, Aguda R, Hartman M, et al. Fabrication and characterization of poly(ε-caprolactone)/α-cyclodextrin pseudorotaxane nanofibers. Biomacromolecules, 2016, 17: 271–279

    Google Scholar 

  82. Liu R X, Qiao X Y, Chung T S. Dual-layer P84/polyethersulfone hollow fibers for pervaporation dehydration of isopropanol. J Membr Sci, 2007, 294: 103–114

    Google Scholar 

  83. Wang Y, Chung T S, Neo B W, et al. Processing and engineering of pervaporation dehydration of ethylene glycol via dual-layer poly-benzimidazole (PBI)/polyetherimide (PEI) membranes. J Membr Sci, 2011, 378: 339–350

    Google Scholar 

  84. Kopec K K, Dutczak S M, Wessling M, et al. Chemistry in a spinneret—On the interplay of crosslinking and phase inversion during spinning of novel hollow fiber membranes. J Membr Sci, 2011, 369: 308–318

    Google Scholar 

  85. Gherasim C V, Luelf T, Roth H, et al. Dual-charged hollow fiber membranes for low-pressure nanofiltration based on polyelectrolyte complexes: One-step fabrication with tailored functionalities. ACS Appl Mater Interfaces, 2016, 8: 19145–19157

    Google Scholar 

  86. Li H, Fu S, Peng L, et al. Surface modification of cellulose fibers with layer-by-layer self-assembly of lignosulfonate and polyelectrolyte: Effects on fibers wetting properties and paper strength. Cellulose, 2012, 19: 533–546

    Google Scholar 

  87. Köklükaya O, Carosio F, Grunlan J C, et al. Flame-retardant paper from wood fibers functionalized via layer-by-layer assembly. ACS Appl Mater Interfaces, 2015, 7: 23750–23759

    Google Scholar 

  88. Arboleda J C, Niemi N, Kumpunen J, et al. Soy protein-based polyelectrolyte complexes as biobased wood fiber dry strength agents. ACS Sustain Chem Eng, 2014, 2: 2267–2274

    Google Scholar 

  89. Müller K, Quinn J F, Johnston A P R, et al. Polyelectrolyte functionalization of electrospun fibers. Chem Mater, 2006, 18: 2397–2403

    Google Scholar 

  90. Saetia K, Schnorr J M, Mannarino M M, et al. Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemir-esistive sensor applications. Adv Funct Mater, 2014, 24: 492–502

    Google Scholar 

  91. Tsuyumoto M, Karakane H, Maeda Y, et al. Development of polyion complex hollow fiber membrane for separation of water-ethanol mixtures. Desalination, 1991, 80: 139–158

    Google Scholar 

  92. Tsuyumoto M. Dehydration of ethanol on a pilot-plant scale, using a new type of hollow-fiber membrane. J Membr Sci, 1997, 133: 83–94

    Google Scholar 

  93. Zhang G, Ruan Z, Ji S, et al. Construction of metal-ligand-co-ordinated multilayers and their selective separation behavior. Langmuir, 2010, 26: 4782–4789

    Google Scholar 

  94. Wan A, Tai B, Leck K J, et al. Silica-incorporated polyelectrolyte-complex fibers as tissue-engineering scaffolds. Adv Mater, 2006, 18: 641–644

    Google Scholar 

  95. Yim E K F, Wan A C A, Le Visage C, et al. Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold. Biomaterials, 2006, 27: 6111–6122

    Google Scholar 

  96. Yim E K F, Liao I C, Leong K W. Tissue compatibility of interfacial polyelectrolyte complexation fibrous scaffold: Evaluation of blood compatibility and biocompatibility. Tissue Eng, 2007, 13: 423–433

    Google Scholar 

  97. Tai B C U, Wan A C A, Ying J Y. Modified polyelectrolyte complex fibrous scaffold as a matrix for 3D cell culture. Biomaterials, 2010, 31: 5927–5935

    Google Scholar 

  98. Leong M F, Toh J K C, Du C, et al. Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun, 2013, 4: 2353

    Google Scholar 

  99. Lim T C, Leong M F, Lu H, et al. Follicular dermal papilla structures by organization of epithelial and mesenchymal cells in interfacial polyelectrolyte complex fibers. Biomaterials, 2013, 34: 7064–7072

    Google Scholar 

  100. Du C, Narayanan K, Leong M F, et al. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hy-drogel fibers for liver tissue engineering. Biomaterials, 2014, 35: 6006–6014

    Google Scholar 

  101. Raghothaman D, Leong M F, Lim T C, et al. Engineering cell matrix interactions in assembled polyelectrolyte fiber hydrogels for mesenchymal stem cell chondrogenesis. Biomaterials, 2014, 35: 2607–2616

    Google Scholar 

  102. Cutiongco M F A, Choo R K T, Shen N J X, et al. Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery. Front Bioeng Biotechnol, 2015, 3

  103. Sibaja B, Culbertson E, Marshall P, et al. Preparation of alginate-chitosan fibers with potential biomedical applications. Carbohydr Polym, 2015, 134: 598–608

    Google Scholar 

  104. Do M, Im B G, Park J P, et al. Functional polysaccharide sutures prepared by wet fusion of interfacial polyelectrolyte complexation fibers. Adv Funct Mater, 2017, 27: 1702017

    Google Scholar 

  105. Liao I C, Wan A C A, Yim E K F, et al. Controlled release from fibers of polyelectrolyte complexes. J Control Release, 2005, 104: 347–358

    Google Scholar 

  106. Takahashi Y, Ohkawa K, Ando M, et al. Adsorption of endocrine disruptors and related compounds using natural polymer composite fibers formed by polyion complexes. Macromol Mater Eng, 2001, 286: 733–736

    Google Scholar 

  107. Cutiongco M F A, Tan M H, Ng M Y K, et al. Composite pullulandextran polysaccharide scaffold with interfacial polyelectrolyte complexation fibers: A platform with enhanced cell interaction and spatial distribution. Acta Biomater, 2014, 10: 4410–4418

    Google Scholar 

  108. Qian L, Dong C, Liang X, et al. Polyelectrolyte complex containing antimicrobial guanidine-based polymer and its adsorption on cellulose fibers. Holzforschung, 2014, 68: 103–111

    Google Scholar 

  109. Li H, Peng L. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr Polym, 2015, 124: 35–42

    Google Scholar 

  110. Miao J, Pangule R C, Paskaleva E E, et al. Lysostaphin-functiona-lized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials, 2011, 32: 9557–9567

    Google Scholar 

  111. Kalinov K N, Ignatova M G, Manolova N E, et al. Novel antibacterial electrospun materials based on polyelectrolyte complexes of a quaternized chitosan derivative. RSC Adv, 2015, 5: 54517–54526

    Google Scholar 

  112. de Bastida G, Arregui F J, Goicoechea J, et al. Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer. IEEE Sens J, 2006, 6: 1378–1379

    Google Scholar 

  113. Goicoechea J, Zamarreüo C R, Matiías I R, et al. Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled neutral red. Sens Actuators B-Chem, 2008, 132: 305–311

    Google Scholar 

  114. Raoufi N, Surre F, Rajarajan M, et al. Fiber optic ph sensor using optimized layer-by-layer coating approach. IEEE Senss J, 2014, 14: 47–54

    Google Scholar 

  115. Iwashita N, Tomisawa J, Seki A, et al. Humidity sensor based on hetero-core structured fiber optic covered with layer-by-layer thin film. Key Eng Mat, 2014, 605: 167–172

    Google Scholar 

  116. Elosua C, de Acha N, Hernaez M, et al. Layer-by-layer assembly of a water-insoluble platinum complex for optical fiber oxygen sensors. Sens Actuators B-Chem, 2015, 207: 683–689

    Google Scholar 

  117. Ban S, Hosoki A, Nishiyama M, et al. Optical fiber oxygen sensor using layer-by-layer stacked porous composite membranes. In: Proceedings of the Photonic Instrumentation Engineering III. 2016, 97540F1–F6

  118. Wang X, Ding B, Sun M, et al. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sens Actuators B-Chem, 2010, 144: 11–17

    Google Scholar 

  119. Chen L H, Ang X M, Chan C C, et al. Layer-by-layer (chitosan/polystyrene sulfonate) membrane-based fabry-perot interferometric fiber optic biosensor. IEEE J Sel Top Quantum Electron, 2012, 18: 1457–1464

    Google Scholar 

  120. Zhang G, Song X, Ji S, et al. Self-assembly of inner skin hollow fiber polyelectrolyte multilayer membranes by a dynamic negative pressure layer-by-layer technique. J Membr Sci, 2008, 325: 109–116

    Google Scholar 

  121. Liu C, Fang W, Chou S, et al. Fabrication of layer-by-layer assembled FO hollow fiber membranes and their performances using low concentration draw solutions. Desalination, 2013, 308: 147–153

    Google Scholar 

  122. Chen Q, Yu P, Huang W, et al. High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal. J Membr Sci, 2015, 492: 312–321

    Google Scholar 

  123. Liu C, Shi L, Wang R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO 2-4 in feed water. J Membr Sci, 2015, 486: 169–176

    Google Scholar 

  124. Yong J K J, Stevens G W, Caruso F, et al. In situ layer-by-layer assembled carbonic anhydrase-coated hollow fiber membrane contactor for rapid CO2 absorption. J Membr Sci, 2016, 514: 556–565

    Google Scholar 

  125. Chen K F, Zheng P Y, Wu J K, et al. Polyelectrolyte complexes/silica hybrid hollow fiber membrane for fusel oils pervaporation dehydration processes. J Membr Sci, 2018, 545: 284–291

    Google Scholar 

  126. Xiao S, Luo X, Peng Q, et al. Effective removal of calcium ions from simulated hard water using electrospun polyelectrolyte nanofibrous mats. Fibers Polym, 2016, 17: 1428–1437

    Google Scholar 

  127. Jing Y, Zhang L, Huang R, et al. Ultrahigh-performance electrospun polylactide membranes with excellent oil/water separation ability via interfacial stereocomplex crystallization. J Mater Chem A, 2017, 5: 19729–19737

    Google Scholar 

  128. Gärdlund L, Wågberg L, Gernandt R. Polyelectrolyte complexes for surface modification of wood fibres. Colloids Surfs A-Physicochem Eng Aspects, 2003, 218: 137–149

    Google Scholar 

  129. Gernandt R, Wågberg L, Gärdlund L, et al. Polyelectrolyte complexes for surface modification of wood fibres. Colloids Surfs A-Physicochem Eng Aspects, 2003, 213: 15–25

    Google Scholar 

  130. Zheng Z, McDonald J, Khillan R, et al. Layer-by-layer nanocoating of lignocellulose fibers for enhanced paper properties. J Nanosci Nanotech, 2006, 6: 624–632

    Google Scholar 

  131. Wu T, Farnood R. Cellulose fibre networks reinforced with carboxymethyl cellulose/chitosan complex layer-by-layer. Carbohydr Polym, 2014, 114: 500–505

    Google Scholar 

  132. Zhao Q, Wang S, Cheng X, et al. Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host-guest inclusion complexation. Biomacromolecules, 2010, 11: 1364–1369

    Google Scholar 

  133. Nechyporchuk O, Bordes R, Köhnke T. Wet spinning of flame-re-tardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl Mater Interfaces, 2017, 9: 39069–39077

    Google Scholar 

  134. Köklükaya O, Carosio F, Wågberg L. Tailoring flame-retardancy and strength of papers via layer-by-layer treatment of cellulose fibers. Cellulose, 2018, 25: 2691–2709

    Google Scholar 

  135. Tian X, Wang B, Li J, et al. Photochromic paper from wood pulp modification via layer-by-layer assembly of pulp fiber/chitosan/spiropyran. Carbohydr Polym, 2017, 157: 704–710

    Google Scholar 

  136. Kwon C H, Ko Y, Shin D, et al. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nat Commun, 2018, 9: 4479

    Google Scholar 

  137. Shi X H, Chen L, Liu B W, et al. Carbon fibers decorated by polyelectrolyte complexes toward their epoxy resin composites with high fire safety. Chin J Polym Sci, 2018, 36: 1375–1384

    Google Scholar 

  138. Sui X, Gao L, Yin P. Shielding Kevlar fibers from atomic oxygen erosion via layer-by-layer assembly of nanocomposites. Polym Degrad Stab, 2014, 110: 23–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuGuang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Liu, D., Li, J. et al. Polymer complexation for functional fibers. Sci. China Technol. Sci. 62, 931–944 (2019). https://doi.org/10.1007/s11431-018-9475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9475-5

Keywords

Navigation