Skip to main content
Log in

A descriptor of “material genes”: Effective atomic size in structural unit of ionic crystals

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The atomic size of each element, described by the ionic radius, is one category of “material genes” and can facilitate our understanding of atomic arrangements in compounds. Most of the ionic radii currently used to measure the sizes of cations and anions in ionic crystals are derived from hard-sphere model based on the coordination numbers, or the soft-sphere model incorporating the effect of ionic polarization. Herein we take a first step towards a novel “effective atomic size” (EAS) model, which takes into consideration the impact of the types and number of neighboring atoms on the relationship between ionic radii and interatomic distances. Taking the binary compounds between Group IA/IIA and VIA/VIIA elements gathered from the latest databases as an example, we show that the proposed EAS model can yield excellent agreement between the predicted and the DFT-calculated interatomic distances, with deviation of less than 0.1 Å. A set of EAS radii for ionic crystals has been compiled and the role of coordination numbers, geometric symmetry and distortion of structural units has been examined. Thanks to its superior predictability, the EAS model can serve as a foundation to analyze the structure of newly-discovered compounds and to accelerate materials screening processes in the future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi S Q, Gao J, Liu Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin Phys B, 2016, 25: 018212

    Article  Google Scholar 

  2. Liu Y, Zhao T, Ju W, et al. Materials discovery and design using machine learning. J Materiomics, 2017, 3: 159–177

    Article  Google Scholar 

  3. Bragg W L. The arrangement of atoms in crystals. Philos Mag, 1920, 40: 169–189

    Article  Google Scholar 

  4. Goldschmidt V M. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14: 477–485

    Article  Google Scholar 

  5. Pauling L. The sizes of ions and the structure of ionic crystals. J Am Chem Soc, 1927, 49: 765–790

    Article  Google Scholar 

  6. Slater J C. Atomic shielding constants. Phys Rev, 1930, 36: 57–64

    Article  MATH  Google Scholar 

  7. Pauling L. The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J Am Chem Soc, 1931, 53: 1367–1400

    Article  MATH  Google Scholar 

  8. Zachariasen W H. A set of empirical crystal radii for ions with inert gas configuration. Z Für Krist-Cryst Mater, 2015, 80: 137–153

    Google Scholar 

  9. Ahrens L H. The use of ionization potentials Part 1. Ionic radii of the elements. GeoChim CosmoChim Acta, 1952, 2: 155–169

    Article  Google Scholar 

  10. Slater J C. Atomic radii in crystals. J Chem Phys, 1964, 41: 3199–3204

    Article  Google Scholar 

  11. Shannon R D, Prewitt C T. Effective ionic radii in oxides and fluorides. Acta Crystlogr B Struct Sci, 1969, 25: 925–946

    Article  Google Scholar 

  12. Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A, 1976, 32: 751–767

    Article  Google Scholar 

  13. Schweinfest R, Paxton A T, Finnis M W. Bismuth embrittlement of copper is an atomic size effect. Nature, 2004, 432: 1008–1011

    Article  Google Scholar 

  14. Greaves G N, Gurman S J, Catlow C R A, et al. A structural basis for ionic diffusion in oxide glasses. Philos Mag A, 2006, 64: 1059–1072

    Article  Google Scholar 

  15. Bishop S R, Perry N H, Marrocchelli D, et al. Electro-Chemo-Mechanics of Solids. Cambridge: Springer International Publishing, 2017

    Book  Google Scholar 

  16. Shuttleworth R. The surface tension of solids. Proc Phys Soc A, 1950, 63: 444–457

    Article  Google Scholar 

  17. Cordero B, Gómez V, Platero-Prats A E, et al. Covalent radii revisited. Dalton Trans, 2008, 40: 2832–2838

    Article  Google Scholar 

  18. Pauling L. The Nature of the Chemical Bond. Ithaca: Cornell University Press, 1960. 260

    Google Scholar 

  19. Gibbs G V, Ross N L, Cox D F, et al. Bonded radii and the contraction of the electron density of the oxygen atom by bonded interactions. J Phys Chem A, 2013, 117: 1632–1640

    Article  Google Scholar 

  20. Holbrook J B, Khaled F M, Smith B C. Soft-sphere ionic radii for Group 1 and Group 2 metal halides and ammonium halides. J Chem Soc Dalton Trans, 1978, 12: 1631–1634

    Article  Google Scholar 

  21. Collin R J, Smith B C. Ionic radii for Group 1 halide crystals and ionpairs. Dalton Trans, 2005, 4: 702–705

    Article  Google Scholar 

  22. Lang P F, Smith B C. Ionic radii for Group 1 and Group 2 halide, hydride, fluoride, oxide, sulfide, selenide and telluride crystals. Dalton Trans, 2010, 39: 7786–7791

    Article  Google Scholar 

  23. Lang P F, Smith B C. Electronegativity effects and single covalent bond lengths of molecules in the gas phase. Dalton Trans, 2014, 43: 8016–8025

    Article  Google Scholar 

  24. Jain A, Ong S P, Hautier G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater, 2013, 1: 011002

    Article  Google Scholar 

  25. Jain A, Hautier G, Moore C J, et al. A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci, 2011, 50: 2295–2310

    Article  Google Scholar 

  26. Belsky A, Hellenbrandt M, Karen V L, et al. New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design. Acta Cryst Sect A Found Cryst, 2002, 58: 364–369

    Article  Google Scholar 

  27. Bergerhoff G, Hundt R, Sievers R, et al. The inorganic crystal structure data base. J Chem Inf Model, 1983, 23: 66–69

    Article  Google Scholar 

  28. Gražulis S, Daškevič A, Merkys A, et al. Crystallography open database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res, 2012, 40: D420–D427

    Article  Google Scholar 

  29. Cotton F A, Wilkinson G. Advanced Inorganic Chemistry. New York: Wiley, 1988. 6

    Google Scholar 

  30. Pauling L. Soft-sphere ionic radii for alkali and halogenide ions. J Chem Soc Dalton Trans, 1980, 645–645

    Google Scholar 

  31. Batsanov S S. The atomic radii of the elements. Russ J Inorg Chem, 1991, 36: 1694–1706

    Google Scholar 

  32. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  Google Scholar 

  33. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  Google Scholar 

  34. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: A1133–A1138

    Article  MathSciNet  Google Scholar 

  35. Khein A, Singh D J, Umrigar C J. All-electron study of gradient corrections to the local-density functional in metallic systems. Phys Rev B, 1995, 51: 4105–4109

    Article  Google Scholar 

  36. dal Corso A, Pasquarello A, Baldereschi A, et al. Generalized-gradient approximations to density-functional theory: A comparative study for atoms and solids. Phys Rev B, 1996, 53: 1180–1185

    Article  Google Scholar 

  37. Staroverov V N, Scuseria G E, Tao J, et al. Tests of a ladder of density functionals for bulk solids and surfaces. Phys Rev B, 2004, 69: 075102

    Article  Google Scholar 

  38. Haas P, Tran F, Blaha P. Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B, 2009, 79: 085104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Li, S., Jie, J. et al. A descriptor of “material genes”: Effective atomic size in structural unit of ionic crystals. Sci. China Technol. Sci. 62, 849–855 (2019). https://doi.org/10.1007/s11431-018-9461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9461-x

Keywords

Navigation