Skip to main content
Log in

Structural characterization of carboxyl cellulose nanofibers extracted from underutilized sources

  • Article
  • Special Topic: Smart and Functional Fiber Materials
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Two different chemical methods, TEMPO-oxidation and nitro-oxidation, were used to extract carboxylcellulose nanofibers (CNFs) from non-wood biomass sources (i.e., jute, soft and hard spinifex grasses). The combined TEMPO-oxidation and homogenization approach was very efficient to produce CNFs from the cellulose component of biomass; however, the nitro-oxidation method was also found to be effective to extract CNFs directly from raw biomass even without mechanical treatment. The effect of these two methods on the resulting cross-section dimensions of CNFs was investigated by solution small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The UV-Vis spectroscopic data from 0.1 wt% TEMPO-oxidized nanofiber (TOCNF) and nitro-oxidized nanofiber (NOCNF) suspensions showed that TOCNF had the highest transparency (> 95%) because of better dispersion, resulted from the highest carboxylate content (1.2 mmol/g). The consistent scattering and microscopic results indicated that TOCNFs from jute and spinifex grasses possessed rectangular cross-sections, while NOCNFs exhibited near square cross-sections. This study revealed that different oxidation methods can result in different degrees of biomass exfoliation and different CNF morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dufresne A. Nanocellulose: A new ageless bionanomaterial. Mater Today, 2013, 16: 220–227

    Article  Google Scholar 

  2. Wang H, Li D, Zhang R. Preparation of ultralong cellulose nanofibers and optically transparent nanopapers derived from waste corrugated paper pulp. BioResources, 2013, 8: 1374–1384

    Google Scholar 

  3. Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev, 2011, 40: 3941–3994

    Article  Google Scholar 

  4. Sharma P R, Chattopadhyay A, Sharma S K, et al. Efficient removal of UO2 2+ from water using carboxycellulose nanofibers prepared by the nitro-oxidation method. Ind Eng Chem Res, 2017, 56: 13885–13893

    Article  Google Scholar 

  5. Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers, 2010, 2: 728–765

    Article  Google Scholar 

  6. Hubbe M A, Rojas O J, Lucia L A, et al. Cellulosic nanocomposites: A review. BioResources, 2008, 3: 929–980

    Google Scholar 

  7. Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 2010, 17: 459–494

    Article  Google Scholar 

  8. Lalia B S, Samad Y A, Hashaikeh R. Nanocrystalline-cellulose-re-inforced poly(vinylidenefluoride-co-hexafluoropropylene) nano-composite films as a separator for lithium ion batteries. J Appl Polym Sci, 2012, 126: E442–E448

    Article  Google Scholar 

  9. Emami Z, Meng Q, Pircheraghi G, et al. Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: Effect on filler dispersion and system properties. Cellulose, 2015, 22: 3161–3176

    Article  Google Scholar 

  10. Razaq A, Nyström G, Strømme M, et al. High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS ONE, 2011, 6: e29243

    Article  Google Scholar 

  11. Ma H, Burger C, Hsiao B S, et al. Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules, 2012, 13: 180–186

    Article  Google Scholar 

  12. Wang R, Guan S, Sato A, et al. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membrane Sci, 2013, 446: 376–382

    Article  Google Scholar 

  13. Ferraz N, Leschinskaya A, Toomadj F, et al. Membrane characterization and solute diffusion in porous composite nanocellulose membranes for hemodialysis. Cellulose, 2013, 20: 2959–2970

    Article  Google Scholar 

  14. Quinlan P J, Tanvir A, Tam K C. Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils. Carbohydr Polym, 2015, 133: 80–89

    Article  Google Scholar 

  15. Yu H Y, Zhang D Z, Lu F F, et al. New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sust Chem Eng, 2016, 4: 2632–2643

    Article  Google Scholar 

  16. Carpenter A W, de Lannoy C F, Wiesner M R. Cellulose nanomaterials in water treatment technologies. Environ Sci Technol, 2015, 49: 5277–5287

    Article  Google Scholar 

  17. Quellmalz A, Mihranyan A. Citric acid cross-linked nanocellulose-based paper for size-exclusion nanofiltration. ACS Biomater Sci Eng, 2015, 1: 271–276

    Article  Google Scholar 

  18. Tang Z, Qiu C, McCutcheon J R, et al. Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J Polym Sci B Polym Phys, 2009, 47: 2288–2300

    Article  Google Scholar 

  19. Mautner A, Lee K Y, Lahtinen P, et al. Nanopapers for organic solvent nanofiltration. Chem Commun, 2014, 50: 5778–5781

    Article  Google Scholar 

  20. Sun D, Yang J, Wang X. Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale, 2010, 2: 287–292

    Article  Google Scholar 

  21. Huang W, Wang Y, Chen C, et al. Fabrication offlexible self-standing all-cellulose nanofibrous composite membranes for virus removal. Carbohydr Polym, 2016, 143: 9–17

    Article  Google Scholar 

  22. Sato A, Wang R, Ma H, et al. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. J Electron Microsc, 2011, 60: 201–209

    Article  Google Scholar 

  23. Sharma P R, Chattopadhyay A, Sharma S K, et al. Nanocellulose from spinifex as an effective adsorbent to remove cadmium(II) from water. ACS Sustain Chem Eng, 2018, 6: 3279–3290

    Article  Google Scholar 

  24. Wu C, Wang Y, Gao B, et al. Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment. Separation Purification Tech, 2012, 95: 180–187

    Article  Google Scholar 

  25. Suopajärvi T, Liimatainen H, Hormi O, et al. Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem Eng J, 2013, 231: 59–67

    Article  Google Scholar 

  26. Feng X, Huang R Y M. Liquid separation by membrane pervaporation: A review. Indust Eng Chem Res, 1997, 36: 1048–1066

    Article  Google Scholar 

  27. Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat Rev Mater, 2016, 1: 16018

    Article  Google Scholar 

  28. He X, Male K B, Nesterenko P N, et al. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces, 2013, 5: 8796–8804

    Article  Google Scholar 

  29. Alsbaiee A, Smith B J, Xiao L, et al. Rapid removal of organic mi-cropollutants from water by a porous β-cyclodextrin polymer. Nature, 2016, 529: 190–194

    Article  Google Scholar 

  30. Korotta-Gamage S M, Sathasivan A. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere, 2017, 167: 120–138

    Article  Google Scholar 

  31. Mahmoudi K, Hamdi N, Srasra E. Study of adsorption of methylene blue onto activated carbon from lignite. Surf Engin Appl Electrochem, 2015, 51: 427–433

    Article  Google Scholar 

  32. Wang B, Torres-Rendon J G, Yu J, et al. Aligned bioinspired cellulose nanocrystal-based nanocomposites with synergetic mechanical properties and improved hygromechanical performance. ACS Appl Mater Interfaces, 2015, 7: 4595–4607

    Article  Google Scholar 

  33. Kardam A, Raj K R, Srivastava S, et al. Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Techn Environ Policy, 2013, 16: 385–393

    Article  Google Scholar 

  34. Zhang Z, Sèbe G, Rentsch D, et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater, 2014, 26: 2659–2668

    Article  Google Scholar 

  35. Metreveli G, Wågberg L, Emmoth E, et al. A size-exclusion nano-cellulose filter paper for virus removal. Adv Healthcare Mater, 2014, 3: 1546–1550

    Article  Google Scholar 

  36. Xie K, Zhao W, He X. Adsorption properties of nano-cellulose hybrid containing polyhedral oligomeric silsesquioxane and removal of reactive dyes from aqueous solution. Carbohydr Polym, 2011, 83: 1516–1520

    Article  Google Scholar 

  37. Anirudhan T S, Deepa J R, Christa J. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of cobalt(II) from nuclear industry wastewater samples. J Colloid Interface Sci, 2016, 467: 307–320

    Article  Google Scholar 

  38. Wen X, Zheng Y, Wu J, et al. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. Int J Nanomed, 2015, 4623–4637

    Google Scholar 

  39. Zhu H, Luo W, Ciesielski P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev, 2016, 116: 9305–9374

    Article  Google Scholar 

  40. Sharma R, Alam F, Sharma A K, et al. ZnO anchored graphene hydrophobic nanocomposite-based bulk heterojunction solar cells showing enhanced short-circuit current. J Mater Chem C, 2014, 2: 8142–8151

    Article  Google Scholar 

  41. Fang Z, Zhu H, Yuan Y, et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett, 2014, 14: 765–773

    Article  Google Scholar 

  42. Fukuzumi H, Fujisawa S, Saito T, et al. Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules, 2013, 14: 1705–1709

    Article  Google Scholar 

  43. Shah K J, Imae T. Selective gas capture ability of gas-adsorbent-incorporated cellulose nanofiber films. Biomacromolecules, 2016, 17: 1653–1661

    Article  Google Scholar 

  44. Ghosh A K, Bandyopadhyay P. A simple strategy for charge selective biopolymer sensing. Chem Commun, 2011, 47: 8937–8939

    Article  Google Scholar 

  45. Sharma P R, Varma A J. Functional nanoparticles obtained from cellulose: Engineering the shape and size of 6-carboxycellulose. Chem Commun, 2013, 49: 8818–8820

    Article  Google Scholar 

  46. Reid M S, Villalobos M, Cranston E D. Benchmarking cellulose na-nocrystals: From the laboratory to industrial production. Langmuir, 2017, 33: 1583–1598

    Article  Google Scholar 

  47. Xu X, Liu F, Jiang L, et al. Cellulose nanocrystals vs. cellulose na-nofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces, 2013, 5: 2999–3009

    Google Scholar 

  48. Saito T, Kimura S, Nishiyama Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8: 2485–2491

    Article  Google Scholar 

  49. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3: 71–85

    Article  Google Scholar 

  50. Han J, Zhou C, French A D, et al. Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym, 2013, 94: 773–781

    Article  Google Scholar 

  51. Tzhayik O, Pulidindi I N, Gedanken A. Forming nanospherical cellulose containers. Ind Eng Chem Res, 2014, 53: 13871–13880

    Article  Google Scholar 

  52. Sharma P R, Varma A J. Functionalized celluloses and their nano-particles: Morphology, thermal properties, and solubility studies. Carbohydr Polym, 2014, 104: 135–142

    Article  Google Scholar 

  53. Sharma P R, Kamble S, Sarkar D, et al. Shape and size engineered cellulosic nanomaterials as broad spectrum anti-microbial compounds. Int J Biol Macromol, 2016, 87: 460–465

    Article  Google Scholar 

  54. Sharma P R, Rajamohanan P R, Varma A J. Supramolecular transitions in native cellulose-I during progressive oxidation reaction leading to quasi-spherical nanoparticles of 6-carboxycellulose. Carbohydr Polym, 2014, 113: 615–623

    Article  Google Scholar 

  55. Sharma P R, Joshi R, Sharma S K, et al. A simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromolecules, 2017, 18: 2333–2342

    Article  Google Scholar 

  56. Nechyporchuk O, Belgacem M N, Pignon F. Current progress in rheology of cellulose nanofibril suspensions. Biomacromolecules, 2016, 17: 2311–2320

    Article  Google Scholar 

  57. Luo G, Xie L, Zou Z, et al. Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour Tech, 2010, 101: 959–964

    Article  Google Scholar 

  58. Amiralian N, Annamalai P K, Memmott P, et al. Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia’s arid zone. RSC Adv, 2015, 5: 32124–32132

    Article  Google Scholar 

  59. Su Y, Burger C, Ma H, et al. Morphological and property investigations of carboxylated cellulose nanofibers extracted from different biological species. Cellulose, 2015, 22: 3127–3135

    Article  Google Scholar 

  60. Saito T, Nishiyama Y, Putaux J L, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol, 2006, 7: 1687–1691

    Article  Google Scholar 

  61. Puangsin B, Yang Q, Saito T, et al. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Int J Biol Macromol, 2013, 59: 208–213

    Article  Google Scholar 

  62. Meng Q, Li H, Fu S, et al. The non-trivial role ofnative xylans on the preparation of TEMPO-oxidized cellulose nanofibrils. React Funct Poly, 2014, 85: 142–150

    Article  Google Scholar 

  63. Su Y, Burger C, Ma H, et al. Exploring the nature of cellulose microfibrils. Biomacromolecules, 2015, 16: 1201–1209

    Article  Google Scholar 

  64. Amiralian N, Annamalai P K, Memmott P, et al. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose, 2015, 22: 2483–2498

    Article  Google Scholar 

  65. Jacobsen S E, Wyman C E. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol, 2000, 84–86: 81–96

    Google Scholar 

  66. Ma H, Burger C, Hsiao B S, et al. Ultra-fine cellulose nanofibers: New nano-scale materials for water purification. J Mater Chem, 2011, 21: 7507–7510

    Article  Google Scholar 

  67. Okita Y, Saito T, Isogai A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules, 2010, 11: 1696–1700

    Article  Google Scholar 

  68. Mao Y, Liu K, Zhan C, et al. Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J Phys Chem B, 2017, 121: 1340–1351

    Article  Google Scholar 

  69. Sugiyama J, Vuong R, Chanzy H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules, 1991, 24: 4168–4175

    Article  Google Scholar 

  70. Fujisaki Y, Koga H, Nakajima Y, et al. Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater, 2014, 24: 1657–1663

    Article  Google Scholar 

  71. Cosgrove D J. Growth of the plant cell wall. Nat Rev Mol Cell Bio, 2005, 6: 850–861

    Article  Google Scholar 

  72. Kumar R, Hu F, Hubbell C A, et al. Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour Tech, 2013, 130: 372–381

    Article  Google Scholar 

  73. Okita Y, Saito T, Isogai A. TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung, 2009, 63: 529–535

    Article  Google Scholar 

  74. Dimmel D R, Karim M R, Savidakis M C, etal. Pulping catalysts from lignin (5). Nitrogen dioxide oxidation of lignin models to benzoquinones. J Wood Chem Technol, 1996, 16: 169–189

    Article  Google Scholar 

  75. Sharma P R, Zheng B, Sharma S K, et al. High aspect ratio carboxycellulose nanofibers prepared by nitro-oxidation method and their nanopaper properties. ACS Appl Nano Mater, 2018, 1: 3969–3980

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin S. Hsiao.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, C., Sharma, P.R., Geng, L. et al. Structural characterization of carboxyl cellulose nanofibers extracted from underutilized sources. Sci. China Technol. Sci. 62, 971–981 (2019). https://doi.org/10.1007/s11431-018-9441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9441-1

Navigation